An International Research Journal

Vol 25 No 12, 2016

AJP

SSN : 0971 - 3093

Vol 25, No 12, December, 2016

25th Anniversary Year of AJP-2016

Accepted Papers


Asian Journal of Physics                                                                                                    Vol. 25 No 12, 2016, 1467-1485


Thermoluminescence (TL) Basics, theory and applications


Reuven Chen

Raymond and Beverly Sackler School of Physics and Astronomy,

Tel Aviv University, Tel Aviv 69978, Israel

___________________________________________________________________________________________________________________________________

The effect of thermoluminescence (TL) in solids, first discovered in the 17th century, has been studied intensively since the first half of the 20th century. In the present article, the effect is briefly described concentrating mainly on the basic theory and the dose dependence. Also are discussed the applications in radiation dosimetry and archaeological and geological dating. Briefly is also mentioned the sister effect of optically stimulated luminescence (OSL) and its applications. The role of Indian scientists in different aspects of TL/OSL is described. From the thousands of papers published by Indian researchers only a relatively small number could be mentioned here. The contribution of Indian investigators to the quest for new TL and OSL dosimetric materials, in particular in recent years, has been elaborated upon. Also have been discussed the study of TL from photosynthetic materials and the input of Indian scientists to this subject of botany. Finally, a number of review papers and books by Indian workers have been mentioned.  © Anita Publications. All rights reserved.

Keywords: Thermoluminescence, Geological dating, Photosynthetic materials

Total Refs: 193

1. Arnold W A, Phototosynth Res, 27(1991)73-82.
2. Heckelsberg L F, Health Phys, 39(1980)391-393.
3. (a) Wick F G, J Opt Soc Am, 14(1927)33-44; doi.org/10.1364/JOSA.14.000033
   (b) Wick F G, J Opt Soc Am, 21(1931)223-231; doi.org/10.1364/JOSA.21.000223
4. Johnson R P, J Opt Soc Am, 29(1939)387-391;doi.org/10.1364/JOSA.29.000387
5. (a) Randall J T, Wilkins MHF, Proc Roy Soc London, 184 (1945) 347-364. 390.
    (b) Randall J T, Wilkins MHF, Proc Roy Soc London, 184 (1945)366
    (c) Randall J T, Wilkins MHF, Proc Roy Soc London, 184 (1945)390
6. Garlick G F J, Gibson A F, Proc Phys Soc, A60(1948)574; /doi.org/10.1088/0959-5309/60/6/308
7. May C E, Partridge J A, J Chem Phys, 40 (1964) 1401.
8. Bose S N, Sharma J, Dutta BC, A report on the study of thermoluminescence, Trans Bose Res Inst (Calcutta) 20 (1955) 177. See also: Bose HN, Contribution of S.N. Bose in the field of thermoluminescence, Physics News, 5 (1974) 53. 
9. Halperin A, Braner A A, Phys Rev, 117(1960)408.
10. Antonov-Romanovskiĭ VV, Izv Akad Nauk SSSR Fiz Ser, 15 (1951) 637.
11. Lushchik C B, Sov Phys JETP, 3 (1956) 390.
12. Chen R, J Appl Phys, 40 (1969)570.
13. Chen R, J Electrochem Soc, 116 (1969) 1254.
14. Lewandowski AC, McKeever SWS, Phys Rev, B43 (1991) 8163.
15. Sunta CM, Ayta WEF, Piters TM, Watanabe S, Radiat Meas, 30 (1999) 197.
16. Sunta CM, Ayta WEF, Chubaci JFD, Watanabe S, J Phys D: Appl Phys, 34 (2001) 2690.
17. Sunta C M, Ayta WEF, Chubaci JFD, Watanabe S, J Phys D: Appl Phys, 38 (2005) 95.
18. Bos A JJ , Radiat Meas, 33(2001)737.
19. Abd El-Hafez A I, Yasin M N Sadek A M, NIMA, 637(2011)158-163.
20. Haering RH, Adams EN, Phys Rev, 117 (1960) 451.
21. Dussel GA, Bube, RH, Phys Rev, 155 (1967) 764.
22. Böhm A, Scharmann A, Phys Stat Sol A, 4 (1971) 99.
23. Agersap Larsen N, Bøtter-Jensen L, McKeever SWS, Radiat Prot Dosim, 84 (1999) 87.
24. Opanowicz A, J Phys D: Appl Phys, 40(2007)4980.
25. Smith BW, Rhodes EJ, Radiat Meas, 23 (1994) 329.
26. Bailey RM, Smith BW, Rhodes, EJ, Radiat Meas, 27 (1997) 123.
27. Pagonis, V, Kitis G, Phys Stat Sol, A249 (2012) 1590.
28. Chen R, Pagonis V, NIMB, B312 (2013) 69.
29. Jain S C, Mehendru P C, Phys Rev, A140 (1965) 957.
30. Nambi KSV, Higashimura T, Radiat Eff, 10 (1971) 197.
31. David M, Nambi KSV, Ganguly A K, Proc Natl Symp Thermolum Appl Kalpakkam, Bhabha At Res Cent Bombay, (1976) 89.
32. Mahajan O H, Joshi, T R, Nambi K SV, Joshi R V, Health Phys, 51(1986) 127.
33. Somaiah K, Nambi KSV, J Mater Sci Lett, 6 (1987) 386.
34. Sunta C M, Mazzaro A C, Sordi G M, Health Phys, 30(1976)309.
35. Sunta CM, J Phys C: Sol St Phys, 3 (1970) 1978.
36. Kathuria SP, Sunta CM, J Phys D: Appl Phys, 12 (1979) 12.
37. Acharya BS, Mukherjee ML, Sunta CM, Kathuria SP, Phys Stat Sol, A 81 (1984) 533.
38. Sunta CM, Mol AW, Kulkarni RN, Piters TM, Chubaci JFD, Ayta WEF, Watanabe S, Radiat Eff Def Sol, 146 (1998) 229.
39. Sunta CM, Kulkarni RN, Piters TM, Ayta WEF, Watanabe S, J Phys D: Appl Phys, 31 (1998) 2074.
40. Sunta CM, Feria Ayta WE, Piters TM, Kulkarni RN, Watanabe S, J Phys D: Appl Phys, 32 (1998) 1271.
41. Agrawl MD, Rao KV, Phys Stat Sol, A 3 (1970) 153.
42. Govinda S, Rao KV, Sol St Comm, 16 (1975) 297.
43. Gupta, AK, Rao KV, Phys Stat Sol, A 59 (1980) 277.
44. Chakraborty PK, Rao KV, Phys Stat Sol, B 120 (1983) K107.
45. De A, Rao KV, J Mater Sci, 27 (1992) 1189.
46. Banerjee HD, Ratnam VV, Physica, 65 (1973) 97.
47. Gartia RK, Phys Stat Sol, A 44 (1977) K21.
48. Gartia RK, Acharya BS, Ratnam VV, Cryst Latt Def, 8 (1979) 153.
49. Sridaran P, Gartia RK, Bhuniya RC, Ratnam VV,  Phys Stat Sol, A 64 (1981) 127.
50. Singh TSC, Mazumdar PS, Gartia RK, J Phys D: Appl Phys, 21 (1988) 1312.
51. Murthy MSS, Lakshmanan AR, Radiat Res, 67 (1976) 215.
52. Lakshmanan AR, Shinde SS, Bhatt RC, Phys Med Biol, 23 (1978) 952.
53. Lakshmanan AR, Vohra KG, Nucl Inst Meth, 159 (1979) 585.
54. Lakshmanan AR, Chandra B, Bhatt RC, Radiat Prot Dosim 2 (1982) 13.
55. Lakshmanan AR, Tiwari SS, Radiat Prot Dosim 47 (1993) 243.
56. Mazumdar PS, Singh SJ, Gartia RK, J Phys D: Appl Phys, 21 (1988) 815.
57. Mohan NS, Chen R, J Phys D: Appl Phys, 3 (1970) 243.
58. Reddy BK, Nagabhooshanam M, Somaiah K, Rao AS, Cryst Res Technol, 22 (1987) K39.
59. Sunta CM, Feria Ayta WE, Kulkarni RN, Chen R, Watanabe S, Radiat Prot Dosim, 71 (1997) 93.
60. Kaur J, Shrivastava R, Dubey V, Jaykumar B, Res Chem Intermed, 40 (2014) 2599.
61. Cameron JR, Suntharalingam N, Kenny, GN, Thermoluminescence dosimetry (The University of Wisconsin Press) 1968.
62. Mische EF, McKeever SWS, Radiat Prot Dosim, 29 (1989)159.
63. Sunta CM, Okuno E, Lima JF, Yoshimura EM, J Phys D: Appl Phys, 27 (1994) 2636.
64. Mikado T, Tomimasu T, Yamazaki T, Chiwaki M, Nucl Instrum Meth, 157 (1978) 109.
65. Jain VK, Radiat Eff, 54 (1981) 99.
66. Halperin A, Chen R, Phys Rev, 148 (1966) 839.
67. Yaskolko V Ya, Phys Stat Sol, A 157 (1996) 507.
68. Otaki H, Kido H, Hiratsuka Y, Fukuda Y, Kakeuchi N, J Mater Sci Lett, 13 (1994) 1267.
69. Jain VK, Nucl Inst Meth, 180 (1981) 195.
70. Lakshmanan AR, Chandra B, Bhatt RC, Hoffman W, Spallek R, J Phys D: Appl Phys, 18 (1985) 1673.
71. Rao A R, Rao NVP, Murthy K V , Int J Sci Inv Today, 3 (2014) 666.
72. Suntharalingam N, Cameron JR, Phys Med Biol, 14 (1969) 397.
73. Aitken MJ, Thompson J, Fleming SJ, Proc 2nd Int Conf Lumin Dosim, Gattlinburg, Tenn, US Atom Ener Comm, CONF-680920 (1968) 364.
74. Chen R, Bowman SGE, Eur PACT J, 2 (1978) 216.
75. Rodine ET, Land PL, Phys Rev, B 4 (1971) 2701.
76. Kristianpoller N, Chen R, Israeli M, J Phys D: Appl Phys, 7 (1974) 1063.
77. Chen R, Fogel G, Radiat Prot Dosim, 47 (1993) 23.
78. Facey RA, Health Phys, 12 (1966) 715.
79. Groom PJ, Durrani SA, Khazal KAR, McKeever SWS, Eur PACT J, 2 (1978) 200.
80. Hsu PC, Weng PS, Nucl Inst Meth, 147 (1977) 453.
81. Wintersgill MC, Townsend PD, Radiat Eff, 38 (1978) 113.
82. Kvasnička J, Appl Radiat Isot, 34 (1983) 713.
83. McKeever SWS, Chen R, Groom PJ, Durrani SA, Nucl Inst Meth, 175 (1980) 43.
84. Chen R, McKeever SWS, Durrani SA, Phys Rev, B24 (1981) 4931.
85. Chen R, McKeever SWS, Durrani SA, Eur PACT J, 6 (1982) 295.
86. Valladas G, Ferreira J, Nucl Instrum Meth, 175 (1980) 216.
87. Chawla S, Rao TKG, Singhvi A K, Radiat Meas, 29 (1998) 53.
88. Curie M, Recherches sur les Substances Radioactives, Gauthier-Villars, Paris (1904).
89. Curie M, Radioactive Substances, Phil Library, New York (1961).
90. Daniels F, Symp Chem Phys Radiat Dosim, Technical Command, Army Chem Cent Maryland (1950).
91. Ginther RJ, Kirk RD, TL of CaF2:Mn and its application to dosimetry¸ Prog Rept NRL (1956).
92. Nonsenko VM, Revzin LS, Jaskolko VL, Izv Akad Nauk SSSR (Fiz), 26 (1956) 2046.
93. Chandra B, Ayyangar K, Lakshmanan AR, Phys Med Biol, 21 (1976) 67.
94. Mehta SK, Sengupta S, Nucl Inst Meth, 164 (1979) 349.
95. Marwaha GL, Singh N, Vij DR, Mathur VK, Mater Res Bull, 14 (1979) 1489.
96. Vohra KG, Bhatt RC, Chandra B, Pradhan AS, Lakshmanan AR, Sastry SS, Health Phys, 38 (1980) 129.
97. Pradhan AS, 35 years of TLD in personnel and environment monitoring in India-a tribute to Dr KG Vohra, Indian Assoc Radiat Prot, Mumbai (2010) 190p.
98. Pradhan AS, Lee JI, Kim JL, J Med Phys, 33 (2008) 85.
99. Sneha C, Pradhan SM, Adtani MM, Radiat Prot Dosim, 141 (2010) 168.
100. Kumar M, Rakesh RB, Gupta A, Bakshi AK, Babu DAR, Radiat Prot Environ, 37 (2014) 169. 
101. Tiwari RC, IJESRT, 3 (2014) 705.
102. Rao N S, Parial K, Koide H, Sengupts D, Current Sci, 109 (2015) 600.
103. Bhadane MS, Hareesh K, Dahiwale SS, Sature KR, Patil BJ, Asokan K, Kanjilal D, Bhoraskar VN, Shole SD, NIMB, 386 (2016) 61.
104. Annalakshmi O, Jose MT, Venkatraman B, J Lumin, 179 (2016) 241.
105. Kalita JM, Wary G, NIMB, 383 (2016) 93.
106. Aitken MJ, Fleming SJ, TL dosimetry in archaeological dating, Topics in Radiation Dosimetry, Ed Attix FH, Academic Press (1972).
107. Aitken MJ, Physics and Archaeology, Clarendon Press, Oxford (1974).
108. Aitken MJ, Antiquity, LI (1977) 11.
109. Aitken MJ, Evaluation of effective radioactive content by means of TL dosimetry, TL of Geological Materials, Ed McDougall DJ, Academic Press (1968) 463.
110. Kaul IK, Bhattacharya PK, Tolpadi S, Factors in age determination by TL of smoky quartz, TL of Geological Materials, Ed McDougall DJ, Academic Press (1968) 327.
111. Agrawal DP, Bhandari N, Lal BB, Singhvi AK, Ind Acad Sci (Earth Planet Sci), 90 (1981) 161.
112. Singhvi AK, Sharma YP, Agarwal DP, Nature, 295 (1982) 313.
113. Singhvi AK, thermoluminescence research in India: A review of applications to archaeology, sediments and meteorites, Southeast Asian archaeology at the XV Pacific Science Congress, Dunedin, New Zealand, Ed Donn Bayard (1984).
114. Singhvi AK, Agrawal DP, Thermoluminescence in Archaeology: An Indian Perspective, Natl Symp Thermally Stimulated Luminescence and Related Phenomena, Ahmedabad (1984) 263.
115. Sengupta D, Bhandari N, Watanabe S, Brazilian J Phys, 27 (1997) 3.
116. Singhvi AK, Chauhan N, Biswas RH, Mediterranean Archaeol and Archaeometry, 10 (2010) 9.
117. Singhvi AK, Stokes SC, Chaudhan N, Nagar YC, Jaiswal MK, Geochronometria, 38 (2011) 231.
118. Biswas RH, Morthekai P, Gartia RK, Singhvi AK, Earth Planet Sci Lett, 304 (2011) 36.
119. Biswas RH, Williams MAJ, Raj R, Juyal N, Singhvi AK, Quart Geochron, 17 (2013) 14.
120. Morthekai P, Ali SN, Gond Geol Mag, 29 (2014) 1.
121. Koul DK, Pagonis V, Patil P, Radiat Meas, 91 (2016) 28.
122. Sharma SK, Thomas J, Pandian MS, Rao PS, Gartia RK, Appl Radiat Isot, 105 (2015) 198.
123. Suresh G, Ramasamy V, Ponnusamy V, Natl Resour Res, 20 (2011) 389.
124. Chen R, Pagonis V, Thermally and optically stimulated luminescence: A simulation approach, John Wiley and Sons, Chichester (2011).
125. Bose HN, Proc Phys Soc London, B 68 (1955) 249.
126. Sharma J, Phys Rev, 85 (1952) 692.
127. Sharma J, Phys Rev, 87 (1952) 535.
128. Sharma J, Phys Rev, 101 (1956) 1295.
129. Sharma J, J Chem Phys, 24 (1956) 39.
130. Ewles J, Jain SC, Joshi RV, Proc Phys Soc, 71 (1958) 852.
131. Jain SC, Mahendru PC, Phys Rev, 140 (1965) 957.
132. Joshi RV, Shah SV, J Phys C: Sol St Phys, 2 (1969) 988.
133. Joshi RV, Joshi TR, J Lumin, 3 (1971) 389.
134. Joshi RV, Joshi TR, J Phys D: Appl Phys, 5 (1972) 446.
135. Joshi RV, Kekan NL, J Phys D: Appl Phys, 6 (1973) 888.
136. Mahendru PC, Phys Lett, 30A (1969) 397.
137. Murti YVGS, Murthy KRN, J Phys C: Sol St Phys, 5 (1972) 2827.
138. Reddy AR, Ayyangar K, Brownell GL, Radiat Res, 40 (1969) 552.
139. Sastry SBS, Viswanathan V, Ramasastry C, J Phys C: Sol St Phys, 5 (1972) 3552.
140. Agrawal MD, Rao KV, Phys Stat Sol, A 3 (1970) 153; A 6 (1971) 693.
141. Nambi KSV, Higeshimura T, Radiat Eff, 10 (1971) 197.
142. Rao DR, Bose HN, Phys Rev, B4 (1971) 2756.
143. Sunta CM, Phys Stat Sol, 37 (1980) K81.
144. Sunta CM, J Phys C: Sol St Phys, 3 (1970) 1978.
145. Ayyangar K, Lakshmanan AR, Bhuwan Chandra, K, Ramadas K, Phys Med Biol, 19 (1974) 656.
146. Mathur VK, Lewandowski AC, Guardala NA, Price JL, Radiat Meas, 30 (1999) 735.
147. Nambi KSV, Bapat VN, Ganguly AK, J Phys C: Sol St Phys, 7 (1974) 4403.
148. Kathal BK, Ranade JD, Ind J Pure Appl Phys, 9 (1971) 456.
149. Lawangar RD, Shalgaonkar CS, Pawar SH, Narlikar AV, Sol St Comm, 10 (1972) 1241.
150. Pawar SR, Lawangar RD, Shalgaonkar CS, Narlikar AV, Phil Mag, 24 (1971) 727.
151. Vij DR, Mathur VK, J Phys D: Appl Phys, 2 (1969) 624.
152. Khare VK, Ind J Pure & Appl Phys, 9 (1971) 856.
153. Kaul IK, Bhattacharya PK, Tolpadi S, J Geophys Res, 71 (1966) 1275.
154. Kaul IK, Ganguli DK, Hess BFH, Mold Geol, 3 (1972) 201.
155. Rao KV, J Phys Chem Sol, 20 (1961) 193.
156. Luthra JM, Gupta NM, Ind J Pure & Appl Phys, 7 (1969) 287.
157. Luthra JM, Gupta NM, J Lumin, 9 (1974) 94.
158. Bhan S, Phys Stat Sol, A 71(1982)73-78; doi: 10.1002/pssa.2210710108
159. Gartia RK, Sharma BA, Ranita U, Ind J Eng & Mater Sci, 11 (2004) 137.
160. Singh L, Kaur N, Singh M, Ind J Pure & Appl Phys, 50 (2012) 14.
161. Choubey A K, Brahme N, Dhoble S J, Bisen D P, Ghormare K B, Adv Mat Lett, 5(2014)396-399.
162. Daniel D J, Annalakshmi O, Madhusoodanan U, Ramasamy P, J Rare Earths, 32(2014)496-500; doi: 10. 1016/S1002-0721(14)60098-3
163. Ambast A K, Sharma S K, AIP Conf Proc, 1675 (2015)030053-1; https://doi.org/10.1063/1.4929269
164. Goswami B, Singha R, Int J Sci Eng Res, 6(2015)1367.
165. Deshpande A, Dhoble N S, Gedam S C, Dhoble S J, J Lumin, 180(2016)58-63; doi.org/10.1016/j.jlumin.2016.08.003
166. Sao S K, Brahme N, Bisen, D P, Tiwari G, Lumin, 31(2016)1364; doi: 10.1002/bio.3116
167. Kumar S, Gathania A K, Vij A, Kumar R, Ceramics Int, 42(2016)14511.
168. Kaplana T, Gandhi Y, Sanyal B, Sudarsan V, Bragiel P, Piasecki M, Kumar V R, Ravi V, Veeraiah N, J Lumin, 179(2016)44.
169. Gupta K K, Kadam R M, Dhoble N S, Lochab S P, Singh V, Dhoble S J, J Alloys Comp, 688(2016)982.
170. Gaikwad S U, Patil R R, Kulkarni M S, Bhatt B C, Moharil S V, Appl Radiat Isot, 111(2016)75.
171. Kalita JM, Wary G, NIMB, 383 (2016) 177.
172. Palan CB, Omanwar SK, Optik, 127 (2016) 7137.
173. Kore BP, Pardhi SA, Dhoble NS, Dhoble SJ, Swart HC, Lumin (2016) http://dx.doi.org/10.1002/bio.3222.
174. Pathak P, Kurchania R, Radiat Phys Chem, 127 (2016) 56.
175. Kaur J, Singh D, Surnarayana NS, Dubey V, J Disp Technol, 12 (2016) 928.
176. Sahu IP, Bisen DP, Tamrakar RK, J Disp Technol, 12 (2016) 1478.
177. Tamrakar RK, Bisen DP, Upadhyay K, Radiat Phys Chem, 130 (2017) 321.
178. Bahl S, Kumar V, Bihari R R, Kumar P, J Lumin, 181 (2017) 36.
179. Vass I, The history of photosynthetic thermoluminescence, Photosyn Res, 76 (2003) 303.
180. Arnold W, Sherwood H, Proc Natl Acad Sci USA, 43(1957)105-114.
181. Tatake VG, Desai TS, Govindjee, Sane PV, Photochem Photobiol, 13 (1981) 243.
182. DeVault, D, Govindjee, Arnold, W, Proc Natl Acad Sci USA, 80 (1983) 983.
183. Vass I, Govindjee, Photosynth Res, 48(1996)117-126.
184. Misra A N, Misra M, Singh R, Ch. 7 in Biophysics, INTECH, (ed) Misra A N, pp. 155-170 (2012).
185. Nambi KSV, Thermoluminescence and its understanding and applications, Instituto de Energia Atomica, São Paulo, (1977).
186. Nambi KSV, Sunta C M, Bull Radiat Prot, 2(1979)57.
187. Sunta C M, Radiat Prot Dosim, 8(1984)25.
188. Nambi KSV, David M, Basu A S, Sunta CM, J Environ Radioact, 2(1985)59.
189. Koul D K, Pramana, 71(2008)1209-1229.
190. Misra A N, Int J Life Sci Biotech Pharma Res, 2(2013)10-17.
191. Mahesh K, Weng P S, Furetta C, Thermoluminescence in solids and its applications, Nuclear Technology Publishing (1989).
192. Vij D R, Thermoluminescent Materials, PTR Prentice Hall (1993).
193. Sunta C M, Unravelling Thermoluminescence, Springer Series in Materials Science, Vol. 202, (2015).

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                    Vol. 25 No 12, 2016, 1487-1504


Thermoluminescence in India: The Golden Era

(From the beginning to 1965)


R K Gartia

Department of Physics, Manipur University, Imphal-795 003, Manipur, India

___________________________________________________________________________________________________________________________________

Thermoluminescence (TL) has been an active area of research in many laboratories of India. The overall contribution of Indian workers to the field of TL is significant. In fact practically all books on TL and related areas have recognized this. A search of early work on TL upto~1965 clearly shows that there is no proper documentation and evaluation. A number of published documents clearly reveal that though the first paper on the subject appeared in 1946 from IISc  Bangalore from the group of C.V. Raman, it flourished in Khaira Laboratory, Calcutta under the supervision of S.N. Bose. During the period 1950-1956, H.N Bose , J.Sharma, B.C.Datta and A.K. Ghosh made significant contributions in the field of TL. A sensitive TL spectrometer was designed under the guidance of S.N. Bose, who presented its details at the International Conference on Crystallography held in Paris in 1954. The equipment was duplicated in IIT Kharagpur by the group of H.N. Bose and was in operation beyond 1960. In this review some of the selected data recorded on the equipment have been tested for its present day relevance by applying rigorous methods of analysis.

Inspite of an excellent start and back up by S.N Bose, one of the most influential scientists of pre- Independent and immediate post-independent India, somehow, lost the golden opportunity of becoming world leader in the field of TL. This review presents, as far as possible, an authentic record of early works on TL in India based on the personal involvement of the author with the subject right from 1972 to present day that include a six years (1972-78) stint at IIT, Kharagpur, where he had the privilege of direct interaction with H.N. Bose and his group who did work on TL and related areas.

Although this review is a critical comment on early Indian work on TL, it does present a concise picture of TL and its application till the present day and point out some possible directions where the subject may enter in future. It provides the relevant references for the beginners those who wish to exploit the potentialities of TL as a spectroscopic tool to study optical properties of insulators/ semiconductor © Anita Publications. All rights reserved.

Keywords: CGCD, TL, D2O ice, FOM.

Total Refs: 164

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                    Vol. 25 No 12, 2016, 1505-1516


Trap levels modification strategies of luminescent devices based on CaS lattice: The role of thermoluminescence


Lisham Paris Chanu, Ngangbam Chandrasekhar and R K Gartia*

Department of Physics, Manipur University, Imphal-795 003, Manipur, India

___________________________________________________________________________________________________________________________________

The performance of all devices using the phenomenon of luminescence may be the scintillator, dosimeter or phosphor for lamps, radar screen or Glow-in-the-dark-Phosphor essentially is designed in the large band-gap of an inorganic solid with or without activator and/or co-activator. The charge trafficking is controlled by physical parameters of the trapping levels that may be intrinsic or extrinsic or both. Thermoluminescence (TL) is a sensitive technique capable of locating the position of the trapping levels with respect to either the valance or conduction band, without distinguishing between the acceptor and the donor trap levels.Using this concept, we present here, the trap level modification strategies adopted by innovators to design their phosphors based on CaS host lattice. The present work focuses on two commercial phosphors, one from Phosphor Technology, England; the other from Jash Marketing Services, Hyderabad, India.  However, the concept is universal for all devices that use luminescence as its signal. Finally, we believe, for the first time a complete picture of trap levels and their relevant parameters for designing future CaS lattice based optical materials for technical applications is presented. The data may  be used for designing future devices for optical storage, IR sensor, IR to Visible convertors and even OSL dosimeters. © Anita Publications. All rights reserved.

Keywords: Scientillator, Dosimeter, Trap levels, Hall effect

Total Refs: 64

    1.    CMS Electromagnetic Calorimeter, Technical Design Report CERN, Geneva, 1997.
    2.    ALICE Technical proposal, CERN/ LHC 95-71, CERN, Geneva, 1995.
    3.    Randall J T, Wilkins M H F, Proc Roy Soc (London), A184 (1945)360.
    4.    Garlick G F J, Gibson A F, Proc Phys Soc, 60(1948)574.The name of Journal in Refs 3 and 4 is same or different.
    5.    Chen R, This Volume.
    6.    Phosphor Technology, England, http://www.phosphor-technology.com/products/products.htm
    7.    Jash Marketting Service, Hyderabad, India, http://www.glowpaint.in/
    8.    Gartia R K, Chandrasekhar N, Defect Diffus Forum, 357(2014)171-191.
    9.    Gartia R K, Defect Diffus.Forum, 357(2014)193-215.
    10.  Lenard P, Schmidt F, Tomaschek R, Becker A, Phosphoreszenz and Fluoreszenz, Part 2, Akademische Verlagsgesellschaft, 1928.
    11.  Lehmann W, J Lumin, 5(1972)87-107.
    12.  Shanker V, Tanaka S, Shiiki M, Deguchi H, Kobayashi H, and Sasakura H, Appl Phys Lett, 45(1984)960.
    13.  Tanaka S, Shankar V, Shiiki M, Deguchi H, Kobayashi H, In SID Symposium Digest of Technical Papers, Orlando, Finland, USA, (1985) 255-258.
    14.  Van Haecke J E, Smet P F, Poelman D, Spectro Acta Part B –Atom. Spectra, 59(2004)1759-1764.
    15.  Van Haecke J E, Smet P F, Poelman D, J Electro Chem Soc, 152(2005)H225-H228.
    16.  Poelman D, Vercaemst R, Van Meirhaeghe R L, Leflere W H, Cardon F, J Lumin, 75(1997)175-181.
    17.  Poelman D, Van Meirhaeghe R L, Vermeersch B A, Cardon F, J Phys D: Appl Phys, 30(1997)465-467.
    18.  Versluys J, Poelman D, Wauters D, VanMeirhaeghe R L, J Phys: Condens Matter, 13(2001)5709-5716.
    19.  Smet P F, VanGheluwe J, VanMeirhaeghe R L, J Lumin, 104(2003)145-150.
    20.  Wauters D, Poelman D, Van Meirhaeghe R L, Cardon F, J Phys: Condens Matter, 12(2000)3901-3909.
    21.  Kim Y S, Yun S J, J Phys: Condens Matter, 16(2004)569-579.
    22.  Yamashite N, Jpn J Appl Phys, 30(1991)3335-3340.
    23.  Okamoto F, Kato K, J Electrochem Soc, 130(1983)432-437.
    24.  Jia D, J Electrochem Soc, 153(2006)H198-H201.
    25.  Jia D, Wang X, Opt Mater, 30(2007)375-379.
    26.  Guo C, Huang D, Su Q, Mat Sci Eng B, 130(2006)189-193.
    27.  Kojima Y, Aoyagi K, Yashue T, J Lumin, 126(2007)319-322.
    28.  Rao R P, J Mater Sci, 21(1986)3357-3386.
    29.  McKeever S W S, Thermoluminescence of Solids, Cambridge University Press: New York, 1985.
    30.  Singh V, Rao T K G, Zhu J J, J Solid State Chem, 179(2006)2589-2594.
    31.  Pitale S S, Sharma S K, Dubey R N, Qureshi M S, Malik M M, Opt Mater, 32(2010)461–468.
    32.  Sharma G, Chawla P, Lochab S P, Singh N, Chalcogenide Lett, 6(2009)445 – 453.
    33.  Sharma G, Gosavi S W, Lochab S P, Singh N, J Lumin, 132(2012)2619–2625.
    34.  Kumar V, Swart H C, Ntwaeaborwa O M, Kumar R, Lochab S P, Mishra V, Singh N, Opt Mater, 32(2009)164–168.
    35.  Sharma G, Lochab S P, Singh N, Curr Appl Phys, 11(2011)921-925.
    36.  Jutamulia S, Storti G M, Lindmayer J, Seiderman W, Appl Opt, 29(1990)4806.
    37.  Albin S, et al., Jpn J Appl Phys, 31(1992)715.
    38.  Calderbank R, Laroia R, McLaughlin S W, IEEE Trans Commn, 46(2001)1011.
    39.  Kravets V G, Opt Mater, 16(2001)369.
    40.  Zhang X, Liu Q, Cheng G, Lu L, Mi X, Wang X, Proc. SPIE, 6029, IC020, Materials and Nanostructures, 2006, doi: 10. 1117/12.667822.
    41.  Lindmayer J, Solid State Technol, 3(1988)135.
    42.  Lindmayer J, et al., Appl Opt, 32(1990)4806.
    43.  Lindmayer J, Communications apparatus using infrared- triggered phosphor for receiving infrared signals, US Patent: 4, 705, 952 (1987).
    44.  Lindmayer J, Photoluminescent materials for outputting yellow-green light, US Patent: 4,812,660(1989).
    45.  Lindmayer J, Photoluminescent materials for outputting orange light, US Patent: 4,829,092(1989).
    46.  Lindmayer J, Process for making photoluminescent materials, US Patent 4,992,302 (1991).
    47.  Gartia R K, Chandrasekhar N, J Alloy Compd, 683(2016)157.
    48.  Xia Q, Batentschuk M, Osvet A, Winnacker A, Schneider J, Radiat Meas, 45(2010)350.
    49.  Singh L L, Gartia R K, Radiat Eff Defect S, 166(2011)297-304.
    50.  Horowitz Y S, Yossian D, Radiat Prot Dosim, 60(1995)114.
    51.  Chung K S, Choe H S, Lee J I, Kim J L, Chang S Y, Radiat Prot Dosim, 115(2005)345-349.
    52.  Puchalska M, Bilski P, Radiat Meas, 41(2006)659-664.
    53.  Abd El-Hafez A I, Yasin M N, Sadek A M, Nucl Instrum Meth Phys Res A, 637(2011)158-163.
    54.  Gartia R K, Ray L, Singh T T, Singh T B, Nucl Instrum Meth B, 274(2012)129-134.
    55.  Ray L, Gartia R K, Singh K B, Singh T B, Nucl Instrum Meth B, 267(2009)3633-3639.
    56.  Gartia R K, Singh T T, Singh T B, Nucl Instrum Meth B, 269(2011)30-33.
    57.  Gartia R K, Nucl Instrum Meth Phys Res B, 267(2009)2903-2907.
    58.  Mishra S K, Eddy N W, Nucl Instrum Meth, 166(1979)537-540.
    59.  Paris L C and Gartia R K, International Journal of Luminescence and applications, 6(2016)46-48.
    60.  Nanto H, Ikeda M, Kadota M, Nishishita J, Nasu S, Douguchi Y, Nucl Instrum Meth Phys Res B, 116(1996)262-264.
    61.  Kumar V, Kumar R, Lochab S P, Singh N, Radiat Eff Defect S, 161(2006)479-485.
    62.  Sweet M A S, Rennie J, Nucl Instrum Meth A, 283(1989)330-334.
    63.  Marwaha G L, Singh N, Vij D R, Mathur V K, J Phys C: Solid State Phys, 13(1980)1559-65.
    64.  Marwaha G L, Singh N, Vij D R, Mathur V K, Mater Res Bull, 14(1979)1489-1495.

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                                               Vol 25, No 12(2016)00-00


characterization and cytotoxicity evaluation of the newlysynthesized Ce(III) complex


Irena Kostova1,*, Venceslava Atanasova1, Vasile Chiş2, Jan Mojžiš3, Petar Yordanov Atanasov4

1Department of Chemistry, Faculty of Pharmacy, Medical University, 2 Dunav St., Sofia 1000, BULGARIA
 2Department of Biomedical Physics, Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, ROMANIA

3Department of Pharmacology, Faculty of Medicine, P.J. Šafarik University, Košice, SLOVAKIA

4Clinic of Internal Diseases UMHATEM “N. I. Pirogov” – Sofia 1000, BULGARIA

E-mail: irenakostova@yahoo.com; Tel. +359 2 92 36 569

 ___________________________________________________________________________________________________________________

The Ce(III) complex of orotic acid (HOA) was synthesized and its structure was determined by means of analytical and spectral analyses. Detailed vibrational analysis of HOA, sodium salt of HOA and Ce(III)-OA systems based on both the calculated and experimental spectra confirmed the suggested metal-ligand binding mode. Significant differences in the IR and Raman spectra of the complex were observed as compared to the spectra of the ligand and confirmed the suggested metal-ligand binding mode. The calculated vibrational wavenumbers including IR and Raman scattering activities for the ligand and its Ce(III) complex were in good agreement with the experimental data. The vibrational analysis performed for the studied species, orotic acid, sodium salt of orotic acid and its Ce(III) complex, helped to explain the vibrational behaviour of the ligand vibrational modes, sensitive to interaction with Ce(III). In this paper we report preliminary results about the cytotoxicity of the investigated compounds. The cytotoxic effects of the ligand and its Ce(III) complex were determined using MTT method on different tumour cell lines. The screening performed revealed that the tested compounds exerted cytotoxic activity upon the evaluated cell lines.©Anita Publications. All rights reserved

Keywords: Ce(III) complex; Orotic acid; IR; Raman; cytot.oxicity

Total Refs:57

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                                               Vol 25, No 12(2016) 00-00

 

Thermoluminescence and photoluminescence properties of blue emitting

Sr2MgSi2O7:Eu2+ , Dy3+, R+ (R+ = Li+, Na+ and K+) phosphors


aIshwar Prasad Sahu*, aD. P. Bisen, aN. Brahme, aLata Wanjari,
bRaunak Kumar Tamrakar and cK V R Murthy
aSchool of Studies in Physics & Astrophysics, Pt. Ravishankar Shukla University, Raipur,Chhattisgarh, India
bDepartment of Applied Physics, Bhilai Institute of Technology, Durg, Chhattisgarh, India
cDepartment of Applied Physics, The MS University of Baroda, Vadodara, Gujarat, India

___________________________________________________________________________________________________________________________________

Sr2MgSi2O7:Eu2+ , Dy3+ and Sr2MgSi2O7:Eu2+ , Dy3+, R+ (R+ = Li+, Na+ and K+) phosphors were prepared by conventional solid state reaction method. The crystal structures of synthesized phosphors were an akermanite type structure which belongs to the tetragonal crystallography. The thermoluminescence (TL) glow curves of the synthesized phosphors were measured at various delay times. With increased delay time, the intensity of the TL peak decays and the position of the TL peak shifts towards higher temperature, indicating the considerable re-trapping associated with general order kinetics. Trap depth are calculated using thermoluminescence glow curve, which signifies the creation of suitable traps, responsible for elongation of afterglow. In this work, the blue emission originated from the 4F9/26H15/2 transitions of Eu2+ ions could clearly be observed after samples were excited at 343 nm. Decay graph indicate that these phosphors also contain the fast and slow afterglow process. The dopant R+ (R+ = Li+, Na+ and K+) as charge compensator in Sr2MgSi2O7:Eu2+ , Dy3+, can further enhance the intensity, and the TL and PL intensity of Sr2MgSi2O7:Eu2+ , Dy3+ doping Li+ is higher than that of Na+ or K+. © Anita Publications. All rights reserved.

Total Refs : 34

    1.      Mirhabibi R, Moztarzadeh F, Bazazi A A, Solati M, Sarrafi M H, Pigment & Resin Technology, 33 (4) (2004) 220.
    2.      Blass G, Wanmaker W L, Vrugt J W, Bril A, Philips Res. Rep., 23, (1968) 189.
    3.      Yihua Hu, Haoyi Wu, Yinhai Wang, Chujun Fu, Mater. Sci. Eng., B 172 (2010) 276.
    4.      Lin Y, Zhang Z, Tang Z, Wang X, Zhang J, Zheng Z, J. Eur. Ceram. Soc., 21, (2001) 683.
    5.      Wu H, Hu Y, Wang X, Radiation Measurement 46 (2011) 591.
    6.      Poort S H M, Reijnhoudt H M, Blasse G, J. Alloys Compd., 241 (1996) 75.
    7.      Pan W, Ning G, Zhang X, Wang J, Lin Y, Ye J, J. Lumin 128 (2008) 1975.
    8.      He H, Fu R, Wang D, Song X, Pan Z, Zhao X, Zhang X, Cao Y, Mater. Res., 23 (2008) 3288.
    9.      Poort S H M, Meyerink A, Blasse G, J. Phys. Chem. Solids 58 (1997) 1451.
    10.    Smith L, J. Electrochem. Soc. 96, (1949) 287.
    11.    Blasse G, Wanmaker W L, Vrugt J W, Bril A, Philips Res. Rep. 23 (1968) 189.
    12.    Blasse G, Bril A, Philips Tech. Rev.31, (1970) 304.
    13.    Barry T L, J. Electrochem. Soc. 115, (1968) 733.
    14.    JCPDS file number 39–1256, JCPDS International Center for DiffractionData.
    15.    Emen F M, Kafadar V E, Kulcu N, Yazici A N, J. Lumin. 144 (2013) 133.
    16.    Rivera T, Furetta C, Azorín J, Radiat. Eff. Defects Solids 162 (2007) 379.
    17.    Gupta S K, Kumar M, Natarajan V, Godbole S V, Opt. Mater. 35 (2013) 2320.
    18.    Manam M, Das S, J. Phys. Chem. Solid 70 (2009) 379.
    19.    Li Y, Wang Y, Journal of Physics: Conference Series 152 (2009) 012090
    20.    Nag A, Kutty T R N, Mater. Res. Bull. 39 (2004) 331.
    21.    Katsumata T, Sakai R, Komuro S, Morikawa T, J. Electrochem. Soc. 150 (2003) H111.
    22.    Mashangva M, Singh M N, Singh T B, Indian J. Pure Appl. Phys 49 (2011) 583.
    23.    Liu B, Shi C, Yin M, Dong L, Xiao Z, J. Alloys Compd., 387 (2005) 65.
    24.    Pagonis V, Kitis G, Furetta C, Numerical and Practical Exercises in Thermoluminescence, Springer (2006).
    25.    Chen R, Mckeever S W S, Theory of Thermoluminescence and Related Phenomenon, World Scientific (1997).
    26.    Liu H, Hao Y, Wang H, Zhao J, Huang P, Xu B, J. Lumin. 131 (2011) 2422.
    27.    Zhang Z, Wang Y, Wang H, Sun Z, Jia L, Journal of Physics: Conference Series 152 (2009) 012050.
    28.    Yuan Z, Chang C, Mao D, Ying W J. J. Alloys Compd. 377 (1–2) (2004) 268.
    29.    Pawar A U, Jadhav A P, Pal U, Kim B K, Kang Y S, J. Lumin 132 (2012) 659.
    30.    Chen Y, Cheng X, Liu M, Qi Z, Shi C, J. Lumin. 129 (2009) 531.
    31.    Lin L, Zhonghua Z, Weiping Z, Zhiqiag Z, Min Y, Journal of Rare Earth 27 (5) (2009) 749.
    32.    Liu J, Lian H, Shi C, Opt. Mater. 29 (2007) 1591.
    33.    Wang Z, Liang H, Zhou L, Wu H, Gong M, Su Q, Chem. Phys. Lett. 412 (2005) 313.
    34.    Aitasalo T, Daren P, Holsa J, Junger K, Krupa J C, Lastusaari M, Legendziewicz J, Niittykoski J, Strek W, J. Solid State Chem. 171 (2003) 114.

___________________________________________________________________________________________________________________________________

© ANITA PUBLICATIONS

All rights reserved