An International Research Journal

Vol 25 No 7,2016


SSN : 0971 - 3093

Vol 25, No 7, July 2016

25th Anniversary Year of AJP-2016

Accepted papers: Vol 25, No 7, 2016

Special Section on

Micro and nano-optics"

Edited by

Shanti Bhattacharya, Saulius Juodkazis and Robert Brunner

Short Note on the SERB school on Optical Metrology conducted in Tezpur University, June 2016

By Dr. Shanti Bhattacharya, Department of Electrical Engineering, IIT Madras, Chennai 600036

With inputs from Prof (Dr.) Rajpal S. Sirohi, Tezpur University


A SERB school on Optical Metrology was recently conducted by the Department of Physics, Tezpur University, Assam. The directors of the school were Dr. Rajpal S. Sirohi, BRLGB Chair professor, Tezpur University and Dr. Gazi A. Ahmed, Head, Department of Physics, Tezpur University. The process for conduct of the school started in 2014 and the first meeting of the Planning Committee was held on April 10, 2015. The contents of the school, the speakers and other relevant points were decided in that meeting. Approval for the meeting came in May 2015 and school ran from June 1st to June 21st, 2016.

Fig 1. Background of participants

Fig 1. Background of participants

From the applications, a committee shortlisted 50 candidates for the school, which finally had 42 participants and 20 speakers. As can be seen from fig.1, most participants were research scholars. Also, although the majority was from Assam, there was good representation from across the country, as seen in the bar chart of fig 2.

Fig 2. States from which participants attended

Fig 2. States from which participants attended

The school was conducted six days a week with lectures from 9 am till 4pm, after which there was either a two-hour lab session or a popular lecture. I had the privilege of teaching at this school on 18th June and was pleased to find the students still motivated after more than two weeks of intense classes and lab sessions. This could be attributed to the high quality of teachers and topics covered. Speakers were from several academic institutes like IIT Delhi (Kehar Singh, Chandra Shakher, P. Senthilkumaran), IIT Guwahati (Bosanta Boruah), IIT Madras (M.P.Kothiyal, A.R.Ganesan and Shanti Bhattacharya), Calcutta University (L. N. Hazra) and Tezpur University(R. S. Sirohi, Pabitra Nath, Ashok Kumar, P. Deb and Gazi Ahmad); as well as from government research labs such as IRDE, Dehradun (A. K. Gupta and Amitava Ghosh) and RRCAT, Indore (P. K. Gupta and Mahesh Kumar Swami). 

The topics within the field of Optical Metrology were diverse and ranged from sources & detectors to the Moiré phenomenon to measurements with fibre optics, MEMS, Vortex beams and metrology of biological systems, to mention just a few. 

One unique feature of this school was that students were given time to present their research work, allowing them to get valuable feedback from fellow attendees and the schools directors.

All in all, this was a well-organised and useful school that will benefit its participants in both the short and long term. 

Asian Journal of Physics                                                                                                          Vol. 25 No 7 (2016)  797-808

Spatial light modulator based Fresnel incoherent digital holography

Roy Kelner and Joseph Rosen

Department of Electrical and Computer Engineering

Ben-Gurion University of the Negev, P.O Box 653, Beer-Sheva 8410501, Israel


The ever-going progress of spatial light modulators (SLMs) technology greatly contributes to the integration of SLM devices into digital hologram recorders. In this review paper, the role of these devices in Fresnel incoherent correlation holography (FINCH) is addressed. The evolution of FINCH in the last decade is described and discussed; emphasis is given to the SLM part in the system.

© Anita Publications. All rights reserved.

Keywords: Spatial light modulators (SLMs), Digital hologram (DHs), Computer generated holograms (CGHs)

Total Refs:59


Asian Journal of Physics                                                                                                         Vol 25, No 7 (2016) 809-831

Graphene: A review of optical properties and photonic applications


M K Kavitha and Manu Jaiswal

Department of Physics, Indian Institute of Technology Madras, Chennai-600 036, India


This article gives a brief overview of the broad-range optical response of graphene and its scope for photonic applications. The optical absorption of single-layer graphene is unique, since it is governed entirely by a fundamental constant of nature, the fine structure constant. The absence of frequency dependence or a dependence on any material properties are noteworthy characteristics. The origin of the optical properties of graphene is discussed with regard to its peculiar band structure and the massless relativistic nature of its charge carriers. Electrostatic gating is one useful knob to modulate the optical absorption, since it modifies the position of the Fermi energy in this low-dimensional material. The experimental evaluation of the optical response of graphene using spectroscopic ellipsometry is discussed in detail. Reduced graphene oxide is the defective counterpart of graphene that can be solution-processed. Its optical properties can be varied by tuning the size of sp2-rich graphene domains. The optical properties of defected graphene are discussed and the important contribution of confined two-dimensional water present in the interlayers is also highlighted. Finally, interesting photonic applications in photodetectors, non-linear optical elements and photovoltaics arising from the combination of unique electronic and optical properties of graphene and its derivatives are summarized.

Keywords: Graphene, Fine-structure constant, Electrostatic gating, Spectroscopic Ellipsometry, Non-linear optics

Total Refs: 136

  1.   Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K, Rev Mod Phys, 81(2009)109-.

  2.   Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K, Science, 320(2008)1308-.

  3.   Blake P, Hill E W, Castro Neto A H, Novoselov K S, Jiang D, Yang R, Booth T J, Geim A K, Appl Phys Lett, 91(2007)063124-.

  4.   Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R, Science, 320(2008) 206-.

  5.   Horng J, Chen Chi-Fan, Geng Baisong, Girit Caglar, Zhang Yuanbo, Hao Zhao, Bechtel Hans A, Martin Michael, Zettl Alex, Crommie Michael F,

Shen Y Ron, Wang Feng, Phys Rev B, 83(2011)165113;

  6.   Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechte Hans A, Liang X, Zettl A,  Shen Y. Ron, Wang F, Nat Nano, 6(2011)630-634.

  7.   Lui C H, Mak K F, Shan J, Heinz T F, Phys Rev Lett, 105(2010)127404;

  8.   Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y, Adv Funct Mater, 19(2009)3077-.

  9.   Lijin G, Aparna G, Shaina P R, Nandita Das G, Manu J, Nanotechnology, 26(2015)495701-.

10.   Wallace P R, Phys Rev, 71(1947) 622-.

11.   Reich S, Maultzsch J, Thomsen C, Ordejón P, Phys Rev B, 66(2002) 035412-.

12.   Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A, Nature, 438(2005)197-.

13.   Kittel C, Introduction to Solid State Physics, 7th Edn. (Wiley), 1996-.

14.   Mintmire J W, White C T, Phys Rev Lett, 81(1998)2506-.

15.   Pachoud A, Jaiswal M, Ang P K, Loh K P, Özyilmaz B, Europhys Lett, 92(2010)27001-

16.   E. McCann D S L A, V. I. Fal'ko, Eur Phys J-Spec Top, 148(2007)91

17.   George L, Jaiswal M, ICC-2015, Bikaner, (2016) AIP conference proceedings in press

18.   Yu Q, Lian J, Siriponglert S, Li H, Chen Y P, Pei S S, Appl Phys Lett, 93(2008)113103-.

19.   Guermoune A, Chari T, Popescu F, Sabri S S, Guillemette J, Skulason H S, Szkopek T, Siaj M, Carbon, 49(2011) 4204-.

20.   Strudwick A J, Weber N E, Schwab M G, Kettner M, Weitz R T, Wünsch J R, Müllen K, Sachdev H, ACS Nano, 9(2015)31-.

21.   Bae S, et al., Nat Nano, 5(2010)574-.

22.   Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A, Science, 306(2004) 666-.

23.   Norimatsu W, and Kusunoki M, Phys Chem Chem Phys, 16(2014)3501-.

24.   Pallecchi E, Lafont F, Cavaliere V, Schopfer F, Mailly D, Poirier W, Ouerghi A, Sci Rep, 4(2014)4558-.

25.   Riedl C, Coletti C, Starke U, J Phys D Appl Phys, 43(2010)374009-.

26.   Pei S, Cheng H M, Carbon, 50(2012)3210-.

27.   Somani P R, Somani S P, Umeno M, Chem Phys Lett, 430(2006)56-.

28.   Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M, Nature, 458(2009) 872-.

29.   Jiao L, Zhang L, Wang X, Diankov G, Dai H, Nature, 458(2009) 877-.

30.   Eda G, Fanchini G, Chhowalla M, Nat Nano, 3(2008)270-.

31.   Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S, Carbon, 45(2007)1558-.

32.   Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F, Phys Rev Lett, 101(2008)196405-.

33.   Gierz I, et al., Nat Mater, 12(2013)1119-.

34.   Mak K F, Ju L, Wang F, Heinz T F, Solid State Commun, 152(2012)1341-.

35.   Kim J, et al., Nano Lett, 12(2012)5598-.

36.   Pyykko P, Desclaux J P, Acc Chem Res, 12(1979)276-.

37.   Christensen N E, Seraphin B O, Phys Rev B, 4(1971)3321-.

38.   Feynman R P, QED: The Strange Theory of Light and Matter. (Princeton University Press ISBN 0-691-08388-6) 1985.

39.   Shaina P R, Jaiswal M, Appl Phys Lett, 105(2014)193103-.

40.   Ni G X, Yang H Z, Ji W, Baeck S, Toh C T, Ahn J H, Pereira V M, Özyilmaz B, Adv Mater, 26(2014)1081-.

41.   Jaiswal M, Sangeeth C S, Wang W, Sun Y P, R M, J Nanosci Nanotechnol, 9(2009)6533

42.   Weisman R B, and Bachilo S M, Nano Lett, 3(2003)1235-.

43.   Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y, Synthetic Metals, 103(1999)2555-.

44.   Jaiswal M, Ph D Thesis, Indian Institute of Science, Bangalore, India, 2008.

45.   Mak K F, Lui C H, Shan J, Heinz T F, Phys Rev Lett, 102(2009)256405-.

46.   Brodie B, Ann Chim Phys, 59(1860)466-.

47.   Staudenmaier L, Ber Dtsch Chem Ges, 31(1898)1481-.

48.   Hummers W S, Offeman R E, J Am Chem Soc, 80(1958)1339-.

49.   Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A, Alemany L B, Lu W, Tour J M, ACS Nano, 4(2010)4806-.

50.   Eda G, Chhowalla M, Adv Mater, 22(2010)2392-.

51.   Kajen R S, Chandrasekhar N, Pey K L, Vijila C, Jaiswal M, Saravanan S, Ng A M H, Wong C P, Loh K P, J Appl Phys, 113(2013) 063710

52.   Eda G, Mattevi C, Yamaguchi H, Kim H, Chhowalla M, J Phys Chem C, 113(2009)15768-.

53.   Loh K P, Bao Q, Eda G, Chhowalla M, Nat Chem, 2(2010)1015-.

54.   Gómez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K, Nano Lett, 7(2007)3499

55.   Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y, ACS Nano, 2(2008) 463

56.   Park S, An J, Potts J R, Velamakanni A, Murali S, Ruoff R S, Carbon, 49(2011) 3019

57.   Shin H J, Kim K K, Benayad A, Yoon Seon-Mi, Park H K, Jung I-S, Jin M H, Jeong H-K, Kim J M, Choi J-Y, Lee Y H Lee, Adv Funct Mater, 19(2009)1987-1992.

58.   Tao Y, Varghese B, Jaiswal M, Wang S, Zhang Z, Oezyilmaz B, Loh K P, Tok E S, Sow C H, Appl Phys A, 106(2011)523-.

59.   Zhou Y, Bao Q, Varghese B, Tang L A L, Tan C K, Sow C-H, Loh K P, Adv Mater, 22(2010)67-.

60.   El-Kady M F, Kaner R B, Nat Commun, 4(2013)1475-.

61.   Boukhvalov D W, Katsnelson M I, J Am Chem Soc, 130(2008) 10697-.

62.   Pereira V M, Lopes dos Santos J M B, Castro Neto A H, Phys Rev B, 77(2008)115109-.

63.   Shen Y, et al., Carbon, 62(2013)157

64.   Johari P, Shenoy V B, ACS Nano, 5(2011) 7640-.

65.   Acik M, Lee G, Mattevi C, Pirkle A, Wallace R M, Chhowalla M, Cho K, Chabal Y, J Phys Chem C, 115(2011) 19761-.

66.   Acik M, Mattevi C, Gong C, Lee G, Cho K, Chhowalla M, Chabal Y J, ACS Nano, 4(2010)5861-.

67.   Weber J W, Calado V E, van de Sanden M C M, Appl Phys Lett, 97(2010)091904-.

68.   Kravets V G, Grigorenko A N, Nair R R, Blake P, Anissimova S, Novoselov K S, Geim A K, Phys Rev B, 81(2010) 155413-.

69.   Losurdo M, Giangregorio M M, Bianco G V, Capezzuto P, Bruno G, Thin Solid Films, 571(2014)389-.

70.   Isić G, et al., J Nanophotonics, 5(2011)051809.

71.   Li W, Cheng G, Liang Y, Tian B, Liang X, Peng L, Hight Walker A R, Gundlach D J, Nguyen N V, Carbon, 99(2016)348-.

72.   Ghosh M, Pradipkanti L, Rai V, Satapathy D K, Vayalamkuzhi P, Jaiswal M, Appl Phys Lett, 106(2015)241902-.

73.   Shen Y, Zhou P, Sun Q Q, Wan L, Li J, Chen L Y, Zhang D W, Wang X B, Appl Phys Lett, 99(2011)141911-.

74.   Nelson F J, Kamineni V K, Zhang T, Comfort E S, Lee J U, Diebold A C, Appl Phys Lett, 97(2010) 253110-.

75.   Fujiwara H, Principles of Optics. In Spectroscopic Ellipsometry, (John Wiley & Sons, Ltd), 2007, pp 13

76.   Fujiwara H, Data Analysis. In Spectroscopic Ellipsometry, (John Wiley & Sons, Ltd), 2007, pp 147

77.   Wurstbauer U, Röling C, Wurstbauer U, Wegscheider W, Vaupel M, Thiesen P H, Weiss D, Appl Phys Lett, 97(2010) 231901-.

78.   Matković A, Beltaos A, Milićević M, Ralević U, Vasić B, Jovanović D, Gajić R, J Appl Phys, 112(2012) 123523-.

79.   Yang L, Deslippe J, Park C-H, Cohen M L, Louie S G, Phys Rev Lett, 103(2009)186802-.

80.   Zhou K G, Chang M J, Wang H X, Xie Y L, Zhang H L, J Nanosci Nanotechnol, 12(2012)508-.

81.   Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K, Science, 335(2012)442-.

82.   Han S, Choi M Y, Kumar P, Stanley H E, Nat Phys, 6(2010)685-.

83.   Algara Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva I V, Nature, 519(2015) 443-.

84.   Zhou W, et al., Nature, 528(2015)E1.

85.   Sobrino Fernández Mario, M. Neek Amal, Peeters F M, arXiv:1601.06073, (2016)

86.   Abergel D S L, Russell A, Fal’ko V I, Appl Phys Lett, 91(2007)063125.

87.   Roddaro S, Pingue P, Piazza V, Pellegrini V, Beltram F, Nano Lett, 7(2007)2707-

88.   Sarkar B, M Sc Thesis, Indian Institute of Techology Madras, Chennai, India, 2013

89.   Chen C F, et al., Nature, 471(2011)617.

90.   Eda G, Lin Y Y, Mattevi C, Yamaguchi H, Chen H-A, Chen I S, Chen C-W, Chhowalla M, Adv Mater, 22(2010) 505.

91.   Chien C T, et al., Angew Chem, 51(2012)6662.

92.   Pan D, Zhang J, Li Z, Wu M, Adv Mater, 22(2010)734-

93.   Xin G, Meng Y, Ma Y, Ho D, Kim N, Cho S M, Chae H, Mat Lett, 74(2012)71-

94.   Zhuo S, Shao M, Lee S T, ACS Nano, 6(2012)1059-

95.   Shen J, Zhu Y, Yang X, Zong J, Zhang J, Li C, New J Chem, 36(2012)97-

96.   Jin S H, Kim D H, Jun G H, Hong S H, Jeon S, ACS Nano, 7(2013)1239-

97.   Wang X, Zhi L, Müllen K, Nano Lett, 8(2008)323-

98.   Wu J, Agrawal M, Becerril H A, Bao Z, Liu Z, Chen Y, Peumans P, ACS Nano, 4(2010)43-

99.   Sangeeth C S S, Jaiswal M, Menon R, J Appl Phys, 105(2009)063713-

100. Shi H, Wang C, Sun Z, Zhou Y, Jin K, Yang G, Sci China Phys Mech Astron, 58(2014)1-

101. Moon I K, Kim J I, Lee H, Hur K, Kim W C, Lee H, Sci Rep, 3(2013)1112-

102. He Q, Wu S, Gao S, Cao X, Yin Z, Li H, Chen P, Zhang H, ACS Nano, 5(2011)5038-

103. Fan J, Liu S, Yu J, J Mater Chem, 22(2012)17027.

104. Anish Madhavan A, Kalluri S, K Chacko D, Arun T A, Nagarajan S, Subramanian K R V, Sreekumaran Nair A, Nair S V, Balakrishnan A, RSC Adv, 2(2012)13032-

105. Chen T, Hu W, Song J, Guai G H, Li C M, Adv Funct Mater, 22(2012)5245-

106. Zhang D W, Li X D, Li H B, Chen S, Sun Z, Yin X J, Huang S M, Carbon, 49(2011)5382-

107. Choi H, Kim H, Hwang S, Choi W, Jeon M, Sol Energy Mater Sol Cells, 95(2011)323-.

108. Lee K S, Lee Y, Lee J Y, Ahn J-H, Park J H, Chem Sus Chem, 5(2012)379-

109. Kaniyoor A, Ramaprabhu S, J Appl Phys, 109(2011)124308-

110. Wang J T-W, Ball J M, Barea E M, Abate A, Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J, Nicholas R J, Nano Lett, 14(2014)724-730.

111. Yan K, Wei Z, Li J, Chen H, Yi Ya, Zheng X, Long X, Wang Z, Wang J, Xu J, Yang S, Small, 11(2015)2269-2275.

112. Wu Z, et al., Nanoscale, 6(2014)10505.

113. You P, Liu Z, Tai Q, Liu S, Yan F, Adv Mater, 27(2015)3632-.

114. Lang F, Gluba M A, Albrecht S, Rappich J, Korte L, Rech B, Nickel N H, J Phys Chem Lett, 6(2015)2745-2750.

115. Han T H, Lee Y, Choi M R, Woo S H, Bae S H, Hong B H, Ahn J H, Lee T W, Nat Photon, 6(2012)105

116. Li N, Oida S, Tulevski G S, Han S J, Hannon J B, Sadana D K, Chen T C, Nat Commun, 4(2013)

117. Sun T, Wang Z L, Shi Z J, Ran G Z, Xu W J, Wang Z Y, Li Y Z, Dai L, Qin G G, Appl Phys Lett, 96(2010) 133301-.

118. Chang J H, Lin W H, Wang P C, Taur J I, Ku T A, Chen W T, Yan S J, Wu C I, Sci Rep, 5(2015)9693.

119. Tielrooij K J, et al., Nat Nano, 10(2015)437.

120. Xia F, Mueller T, Lin Y-m, Valdes-Garcia A, Avouris P, Nat Nano, 4(2009)839-

121. Echtermeyer T J, et al., Nano Lett, 14(2014)3733

122. An Y, Behnam A, Pop E, Ural A, Appl Phys Lett, 102(2013)013110-.

123. Echtermeyer T J, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C, Nano Lett, 16(2016)8-

124. Zhang H, Bao Q, Tang D, Zhao L, Loh K, Appl Phys Lett, 95(2009)141103-

125. Bao Q, Zhang H, Yang J-x, Wang S, Tang D Y, Jose R, Ramakrishna S, Lim C T, Loh K P, Adv Funct Mater, 20(2010)782-

126. Purdie D G, Popa D, Wittwer V J, Jiang Z, Bonacchini G, Torrisi F, Milana S, Lidorikis E, Ferrari A C, Appl Phys Lett, 106(2015)253101

127. Tolstik N, Sorokin E, Sorokina I T, Opt Express, 22(2014)5564

128. Mishra S R, Rawat H S, Mehendale S C, Rustagi K C, Sood A K, Bandyopadhyay R, Govindaraj A, Rao C N R, Chem Phys Lett, 317(2000)510

129. Zhu P, Wang P, Qiu W, Liu Y, Ye C, Fang G, Song Y, Appl Phys Lett, 78(2001)1319-

130. Haripadmam P C, Kavitha M K, John H, Krishnan B, Gopinath P, Appl Phys Lett,101(2012)071103

131. Kavitha M K, Haripadmam P C, Gopinath P, Krishnan B, John H, Mater Res Bull, 48(2013)1967-

132. Cao B, Zhang Y, Zhang H, Zhu J, Chin Opt Lett, 3(2005)S248-

133. Kavitha M K, John H, Gopinath P, Philip R, J Mater Chem C, 1(2013)3669-

134. Zhao M, Peng R, Zheng Q, Wang Q, Chang M J, Liu Y, Song Y L, Zhang H L, Nanoscale, 7(2015)9268-

135. Liu Z B, Xu Y F, Zhang X Y, Zhang X L, Chen Y S, Tian J G, J Phys Chem B, 113(2009)9681-9686

136. Kavitha M K, Ph D Thesis, Indian Institute of Space Science and Technology, Thiruvananthapuram, India, 2015

Graphene: A review of optical properties and photonic applications.pdf
M K Kavitha and Manu Jaiswal


Asian Journal of Physics                                                                                                           Vol 25, No 7 (2016) 833-844

Focused ion beam milling for the fabrication of beam-shaping spiral phase optical elements


Pramitha Vayalamkuzhi and Shanti Bhattacharya

Department of Electrical Engineering

Indian Institute of Technology Madras, Chennai-600 036, India


Focused ion beam (FIB) milling is a versatile technique for direct fabrication of micro/nano optical elements with good resolution on a variety of substrates for a wide range of applications. The fabrication of fork-shaped gratings (FSGs) and spiral phase plates (SPPs) in a quartz plate using a 30 kV Ga+ ion beam is presented. Scanning electron microscopy images demonstrate the realization of fork-shaped gratings and multilevel phase plate with good structural quality. The generation of donut beam could be demonstrated by optical testing. © Anita Publications. All rights reserved.

Keywords: Diffractive optical elements (DOEs), Spiral phase plates (SPPs), Focused Ion beam lithography.

Total Refs : 23


Focused ion beam milling for the fabrication of beam-shaping spiral phase optical elements.pdf
Pramitha Vayalamkuzhi and Shanti Bhattacharya


Asian Journal of Physics                                                                                                            Vol 25, No 7 (2016) 845-851


Integrated optical position sensor for MEMS mirrors


S Richter, G Krampert, U Wolf, L Riedel and D Doering

Carl Zeiss AG, Corporate Research and Technology, Carl Zeiss Promenade 10, D-07743 Jena, Germany


We report on a position sensing system for quasistatic MEMS mirrors using a point source LED imaged onto the backside of the mirror. The position signal is detected by a 4-quadrant-diode and can be used for digital closed-loop control. The resulting resolution is about 13 bit at a sampling frequency of 500 ksps. The whole detection system is miniaturized and integrated in a package enclosing the MEMS mirror, the optical beam path as well as the amplifier circuit of the 4-quadrant-diode. © Anita Publications. All rights reserved.

Keywords: MEMS, Scanning mirrors, Beam steering, closed loop control, 4-quadrant diode.

Total Refs: 8


Asian Journal of Physics                                                                                                           Vol 25, No 7 (2016) 853-869


Tunable optical submicron structures based on soft matter


Wolfgang Mönch

Technische Hochschule Nürnberg Georg Simon Ohm, Postfach, 90121 Nürnberg, Germany


Tunable, active, adaptive and variable optics has experienced a steep development during the last two decades. While initially in adaptive optics, the individual segments of, for example large mirror were actuated individually by mechanical means, a current trend goes towards liquid and soft optical elements. Soft matter brings along with it a wealth of effects that are new in the field of optics. This article, which is intended at the same time an introductory tutorial and a short review, describes the current status in a sub-field of tunable optics and focuses on optical elements based on submicron structures. This scope encompasses all types of diffracting elements, Bragg mirrors and filters, and photonic bandgap elements. After the introduction, we give a concise overview on the material basics and the fundamentals of the tuning effects. The following section presents an overview on the state of the field as found in scientific literature. The article closes with some concluding remarks and the references. © Anita Publications. All rights reserved.

Keywords:  Adaptive optics. Bragg mirrors, Diffracting elements

Total Refs: 97

  1. Zappe Hans, Duppé Claudia (eds), Tunable Micro-optics, (Cambridge University Press, Cambridge, UK ), 2016.

  2.   Brunner Robert, Transferring diffractive optics from research to commercial applications: Part I – progress in the patent landscape, Advanced Optical Technologies, 2(2013)351-359.

  3.   Brunner Robert, Transferring diffractive optics from research to commercial applications: Part I –Size estimations for selected markets, Adv Opt Technol, 3(2014)121-128.

  4.   Jones Richard A L, Soft Condensed Matter, (Oxford University Press, Oxford/New York), 2002.

  5.   Israelachvili Jacob N, Intermolecular & Surface Forces, 2nd edn, (Academic Press), 1991.

  6.   Evans D Fenell, Wennerström Hakan, The Colloidal Domain, Where Physics, Chemistry, Biology, and Technology Meet, (VCH Publishers, Inc., New York), 1994.

  7.   Chaikin P M, Lubensky T C, Principles of condensed matter physics, (Cambridge University Press, Cambridge, UK), 1995.

  8.   Davis H Ted, Statistical Mechanics of Phases, Interfaces, and Thin Films, (VCH Publishers, Inc., New York), 1996.

  9.   Born Max, Wolf Emil. Principles of Optics, 7th edn, (Cambridge University Press, Cambridge), 1999.

10.   Moshrefzadeh R S, Radcliffe M D, Lee T C, Mohapatra S K, Temperature dependence of index of refraction of polymeric waveguides, J Lightwave Technol, 10(1992)420-425.

11.   Kawai Heiji, The Piezoelectricity of Poly (Vinylidene Fluoride), Jpn J Appl Phys, 8(1969)975-976,

12.   Pelrine Ron, Kornbluh Roy, Pei Qibing, Joseph Jose, High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%, Science, 287(2000)836-839.

13.   Warner Mark, Terentjev Eugene Michael, Liquid Crystal Elastomers, (Oxford University Press,Oxford, UK), 2003.

14.   Finkelmann Heino, Kock Hans-J, RehageGünther, Investigations on Liquid Crystalline Polysiloxanes 3: Liquid Crystalline Elastomers – A New Type of Liquid Crystalline Material, Macromol Chem Rapid Comm, 2(1981)317-322.

15.   Schuhladen Stefan, Preller Falko, Rix Richard, Petsch Sebastian, Zentel Rudolf, Zappe Hans, Iris-Like Tunable Aperture Employing Liquid-Crystal Elastomers, Adv Mat, 26(2014)7247-7251.

16.   Flory Paul J, Principles of Polymer Chemistry, (Cornell University Press, Ithaca, New York), 1953.

17.   Cowie J M G, Polymers: Chemistry & Physics of Modern Materials, (Nelson Thornes Ltd., Cheltenham), 2nd edn, 2001 (reprinted).

18.   Sperling Leslie H, Introduction to Physical Polymer Science, (John Wiley & Sons, New York), 3rd edn, 2001.

19.   Naylor Tim de V, Permeation properties. In Booth Colin and Price Colin, editors, Comprehensive Polymer Science. The Synthesis, Characterization, Reactions & Applications of Polymers, Vol 2: Polymer Properties, chapter 20, pp 643-667. Pergamon Press, Oxford, 1989.

20.   Russ Thomas, Brenn Rüdiger, Geoghegan Mark, Equilibrium swelling of polystyrene networks by linear polystyrene, Macromolecules, 36(2003)127-141.

21.   Gundert F, Wolf B A, Polymer-solvent interaction parameters. In Polymer Handbook, (eds) Brandrup J, Immergut E H, (John Wiley & Sons,New York), 3rd edn, (1989), pp VII/173–VII/182.

22.   Errede L A, Polymer Swelling, 13: Correlation of Flory-Huggins interaction parameter, χ, with molecular structure in polystyrene-liquid systems, J Appl Polym Sci, 45(1992)619-631.

23.   Habicht Jörg, Markus Schmidt, Rühe Jürgen, Johannsmann Diethelm, Swelling of thick polymer brushes investigated with ellipsometry, Langmuir, 15(1999)2460-2465.

24.   Biesalski M, Johannsmann D, Rühe J, Synthesis and swelling behavior of a weak polyacid brush, J Chem Phys, 117(2002)4988-4994.

25.   Flory Paul J, Rehner John (Jr), Statistical mechanics of cross-linked polymer networks I: Rubberlike Elasticity, J Chem Phys, 11(1943)512-520.

26.   Flory Paul J, Rehner John (Jr), Statistical mechanics of cross-linked polymer networks II. Swelling, J Chem Phys, 11(1943)521-526.

27.   Toomey R, Freidank D, Rühe J, Swelling behavior of thins urface-attached polymer networks, Macromolecules, 37(2004)882-887.

28.   Campbell M, Sharp D N, Harrison M T, Denning R G, Turberfield A J, Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature, 404(2000)53-56.

29.   Simonov A N, Akhzar-Mehr O, Vdovin G, Light scanner based on viscoelastic stretchable grating, Opt Lett, 30(2005)949-951.

30.   Zhao Yue, Bai Shuying, Dumont Dany, Galstian Tigran V, Mechanically tunable diffraction gratings recorded on an azobenzene elastomer, Advanced Materials, 14(2002)512-514.

31.   Pelrine Ronald E, Kornbluh Roy D, Joseph Jose P, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation, Sensors and Actuators A, 64(1998)77-85.  

32.   Mirfakhrai Tissaphern, Madden John D W, Baughman Ray H, Polymer artificial muscles, Materials Today, 10(2007)30-38.

33.   Aschwanden Manuel, Stemmer Andreas, Polymeric, electrically tunable diffraction grating based on artificial muscles. Opt Lett, 31(2006)2610-2612.

34.   Aschwanden Manuel, Stemmer Andreas. Low voltage, highly tunable diffraction grating based on dielectric elastomer actuators, In Bar-Cohen Yoseph (ed), Proceedings of SPIE, Electroactive Polymer Actuators and Devices (EAPAD), volume 6524(2007), page 65241N. SPIE, 2007.

35.   Aschwanden Manuel, Beck Markus, Stemmer Andreas, Diffractive transmission grating tuned by dielectric elastomer actuator, IEEE Photon Technol Lett, 19(2007)1090-1092.

36.   Kollosche Matthias, Döring Sebastian, Stumpe Joachim, Kofod Guggi, Voltagec ontrolled compression for period tuning of optical surface relief gratings, Opt Lett, 36(2011)1389-1391.

37.   Ghisleri C, Potenza M A C, Ravagnan L, Bellacicca A, Milani P, A simple scanning spectrometer based on a stretchable elastomeric reflective grating, Appl Phys Lett, 104(2014)061910;     38.           Hohlfeld Dennis, Zappe Hans, An all-dielectric tunable optical filter based on thermo-optic effect, J Opt A: Pure and Appl Opt, 6(2004)504-511.

39.   Daleiden J, Rangelov V, Irmer S, Römer F, Strassner M, Prott C, Tarraf A, Hillmer H, Record tuning range of InP-based multiple air-gap moems filter, Electron Lett, 38(2002)1270-1271.

40.   Soda Haruhisa, Iga Kenichi, Kitahara Chiyuki, Suematsu Yasuharu, GaInAsP/InP surface emitting injection lasers. Jpn J Appl Phys, 18(1979)2329-2330.

41.   Iga K, Ishikawa S, Ohkouchi S, Nishimura T, Room-temperature pulsed oscillation of GaAlAs/GaAs surface emitting injection laser, Appl Phys Lett, 45(1984)348-350.

42.   Kimura Mitsuteru, Okahara Kazuaki, Miyamoto Toshihiko, Tunable multilayer film distributed-bragg-reflector filter, J Appl Phys, 50(1979)1222-1225.

43.   Fink Yoel, Winn Joshua N, Fan Shanhui, Chen Chiping, Michel Jürgen, Joannopoulos John D, and Thomas Edwin L, A dielectric omnidirectional reflector, Science, 282(1998)1679-1682.

44.   Weber Michael F, Strover Carl A, Gilbert Larry R, Newitt Timothy J, Ouderkirk Andrew J, Ouderkirk. Giant birefringent optics in multilayer polymer mirrors, Science, 287(2000)2451-2456.

45.   Strharsky Roger, Wheatley John, Polymer optical interference filters, Opt Photon News, 13(2002)34-40.

46.   Nolte Adam J, Rubner Michael F, Cohen Robert E, Creating effective refractive index gradients within polyelectrolyte multilayer films: Molecularly assembled rugate filters, Langmuir, 20(2004)3304-3310.

47.   Sandrock Marie, Wiggins Michael, Shirk James S, Tai Huiwen, Ranade Aditya, Eric Baer, Hiltner Anne, A widely tunable refractive index in a nanolayered photonic material, Appl Phys Lett, 84(2004)3621-3623.

48.   Harada K, Munakata K, Itoh M, Yoshikawa N, Umegaki S, Yatagi T, Spatial filtering used poled polymer etalon light modulators, Opt Quantum Electron, 32(2000)1351-1358.

49.   Vogel V, Berroth M, Tunable liquid crystal Fabry–Perot filters, in: Integrated Optical Devices: Fabrication and Testing, G C Righini, (ed), Proc SPIE, 4944(2003)293-302. 

50.   Sio Luciano De, Tabiryan Nelson, Bunning Timothy J, POLICRYPS-based electrically switchable Bragg reflector, Opt Express, 23(2015)32696-32702.

51.   Wang G, Huang J P, Yu K W, Electrically tunable photonic crystals with nonlinear composite materials, Appl Phys Lett, 91(2007)191117;

52.   Mönch Wolfgang, Dehnert Jan, Prucker Oswald, Rühe Jürgen, Zappe Hans, Tunable Bragg filters based on

       polymer swelling, Appl Opt, 45(2006)4284-4290.

53.   Mönch W, Dehnert J, Jaufmann E, Zappe H, Flory-Huggins-swelling of polymer Bragg mirrors, Appl Phys Lett, 89(2006)164104;

54.   Kang Youngjong, Walish Joseph J, Gorishnyy Taras, Thomas Edwin L, Broadwavelength-range chemically tunable block-copolymer photonic gels, Nature Materials, 6(2007)957-960.

55.   Karaman Mustafa, Kooi Steven E, Gleason Karen K, Vapor deposition of hybrid organic-inorganic dielectric Bragg mirrors having rapid and reversibly tunable optical reflectance, Chem Mater, 20(2008)2262-2267.

56.   Arregui Francisco J, Claus Richard O, Cooper Kristie L, Fernández-Valdivielso Carlos, Matías Ignacio R, Optical fiber gas sensor based on self-assembled gratings, J Lightwave Technol, 19(2001)1932-1037.

57.     Zhai Lei, Nolte Adam J, Cohen Robert E, Rubner Michael F, pH-gated porosity transitions of polyelectrolyte multilayers in confined geometries and their applications as tunable bragg reflectors, Macromolecules, 37(2004)6113-6123.

58.   John Sajeev, Florescu Marian, Photonic bandgap materials: towards an all-optical micro-transistor, J Opt A: Pure and Appl Opti, 3(2001)S103-S120.

59.   Busch Kurt, John Sajeev, Liquid-crystal photonic band-gap materials: The tunable electromagnetic vacuum, Phys Rev Lett, 83(1999)967-970.  

60.   Leonard S W, Mondia J P, van Driel H M, oader O, John S, Tunable twodimensional photonic crystals using liquid-crystal infiltration, Phys Rev B, 61(2000)R2389-R2392.

61.   Schuller Ch, Klopf F, Reithmaier J P, Kamp M, Forchel A, Tunable photonic crystals fabricated in III-V semiconductur slab waveguides using infiltrated liquid crystals, Appl Phys Lett, 82(2003)2767-2769.

62.   Kubo Shoichi, Gu Zhong-Ze, Takahashi Kazuyuki, Fujishima Akira, Segawa Hiroshi, Sato Osamu, Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure, J Am Chem Soc, 126(2004)8314-8319.

63.   Shoichi Kubo, Zhong-Ze Gu, Kazuyuki Takahashi, Akira Fujishima, Hiroshi Segawa, and Osamu Sato. Control of the optical properties of liquid crystal-infiltrated inverse opal structures using photo irradiation and/or an electric field, Chemical Materials, 17(2005)2298–2309.

64.   Ozaki Masanori, Shimoda Yuki, Masahiro Kasano, Yoshino Katsumi, Electric field tuning of the stop band in a liquid-crystal-inflitrated polymer inverse opal, Advanced Materials, 14(2002)514-518.

65.   Escuti Michael J, Qi Jun, Crawford Gregory P, Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite: Threshold behavoir and morphology, Appl Phys Lett, 83(2003)1331-1333.

66.   Haurylau Mikhail, Weiss Sharon M, Fauchet Philippe M, Dynamically tunable 1d and 2d photonic bandgap  structures for optical interconnect applications, In Fauchet Philippe M, Braun Paul V (Eds), Tuning the Optical Response of Photonic Bandgap Structures, Procd SPIE, 5511(2004)38-49.

67.   Weiss S M, Haurylau M, Fauchet P M, Tunable photonic bandgap structures for optical interconnects, Opt Mat, 27(2005)740-744.

68.   Erickson David, Rockwood Troy, Emery Teresa, Scherer Axel, Psaltis Demetri, Nanofluidic tuning of photonic crystal circuits, Opt Lett, 31(2006)59-61.

69.   Haakestad M W, Alkeskjold T T, Nielsen M D, Scolari L, Riishede J, Engan H E, Bjarklev A, Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber, IEEE Photon Technol Lett, 17(2005)819-821.

70.   Kerbage C, Eggleton B J, Tunable microfluidic optical fiber gratings, Appl Phys Lett, 83(2003)1338-1340.

71.   Tian Huiping, Zi Jian. One-dimensional tunable photonic crystals by means of external magnetic fields, Opt Commun, 252(2005)321-328.

72.   Aoki T, Kondo M, Ishii M, Sugama A, Tsukada M, Kurihara K, Kuwabara M, Preparation and properties of two-dimensional PLZT photonic crystals using a sol-gel method, J Europ Ceram Soc, 25(2005)2917-2920.

73.   Li Bo, Zhou Ji, Li Longtu, Wang Xing Jun, Liu Xiao Han, Zi Jian, Ferroelectric inverse opals with electrically  tunable photonic band gap, Appl Phys Lett, 83(2003)4704-4706.

74.   Chong H M H , Rue RM De La, Tuning of photonic crystal waveguide microcavity by thermooptic effect, IEEE Photon Technol Lett, 16(2004)1528-1530.

75.   Escuti M J, Qi J, Crawford G P, Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals, Optics Lett, 28(2003)522-524.

76.   Rajic S, Corbeil J L, Datskos P G, Feasibility of tunable MEMS photonic crystal devices, Ultramicroscopy, 97(2003)473-479.

77.   Park Wounjhang, Lee Jeong-Bong, Mechanically tunable photonic crystal structure, Appl Phys Lett,  85(2004)4845-4847.

78.   Fudouzi Hiroshi, Sawada Tsutomu, Photonic rubber sheets with tunable color by elastic deformation, Langmuir, 22(2006)1365-1368.

79.   Arsenault André C, Clark Timothy J, Freymann Georg von, Cademartiri Ludovico, Sapienza Riccardo, Bertolotti Jacopo, Vekris Evangellos, Wong Sean, Kitaev Vladimir, Manners Ian, Wang R Z, John Sajeev, Wiersma Diederik, Ozin Geoffrey A, Agustín Mihi, Míguez Hernán. From colour fingerprinting to the control of photoluminescence in elastic photonic crystals, Nature Materials, 5(2006)179-184.

80.   Fudouzi Hiroshi, Xia Younan, Photonic papers and inks: Color writing with colorless materials, Adv Mat, 15(2003)892-896.

81.   Foulger Stephen H, Jiang Ping, Ying Yurong, Lattam Amanda C, Smith Dennis W (Jr), Ballato John, Photonic bandgap composites, Adv Mat, 13(2001)1898-1901,

82.   Edrington Alexander C, Urbas Augustine M, DeRege Peter, Chen Cinti X, Swager Timothy M, Hadjichristidis Nikos, Xenidou Maria, Fetters Lewis J, Joannopoulos John D, Fink Yoel, Thomas Edwin L, Polymer-based photonic crystals, Adv Mat, 13(2001)421-425.

83.   Xia Jiqiang, Ying Yurong, Foulger Stephen H, Electric-field-induced rejection wavelength tuning of photonic-bandgap composites, Adv Mat, 17(2005)2463-2467.

84.   Kang Ji-Hwan, Moon Jun Hyuk, Lee Seung-Kon, Park Sung-Gyu, Jang Se Gyu, Yang Seung-Man, Thermoresponsive hydrogel photonic crystals by three dimensional holographic lithography, Adv Mat, 20(2008)3061-3065.

85.   Arsenault André C, Míguez Hernán, Kitaev Vladimir, Ozin Geoffrey A, Manners Ian, A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: A step towards photonic ink (p-ink), Adv Mat, 15(2003)503-507.

86.   Arsenaul André C, Kitaev Vladimir, Manners Ian, Ozin Geoffrey A, Mihi Agustín,Míguez Hernán, Vapor swellable colloidal photonic crystals with pressure tunability, J Mater Chem, 15(2005)133-138.

87.   Shung Kenneth W.-K, Tsai Y C, Surface effects and band measurement in photonic crystals, Phys Rev B, 48(1993)11265-11269.

88.   Arsenault André C, Puzzo Daniel P, Manners Ian, Ozin Geoffrey A, Photoniccrystal full-colour displays, Nature Materials, 1(2007)468-472.

89.   Pan G, Kesavamoorthy R, Asher S A, Optically nonlinear Bragg diffracting nanosecond optical switches, Phys Rev Lett, 78(1997)3860-3863.

90.   Xu X, Majetich S A, Asher S A, Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystals, J Am Chem Soc, 124(2002)13864-13868.

91.   Holtz John H, Asher S A, Polymerized colloidal crystal hydrogel films as intelligent sensing materials, Nature, 389(1997)829-832.

92.   Holtz John H, Holtz Janet S W, Munro Calum H, Asher S A. Intelligent polymerized crystalline colloidal arrays, Novel chemical sensor materials, Anal Chem, 70(1998)780-791.

93.   Gu Zhong-Ze, Fujishima A, Sato O, Photochemically tunable colloidal crystals, J Am Chem Soc, 122(2000)12387-12388.

94.   Gu Zhong-Ze,Iyoda T, Fujishima A, Sato O, Photoreversible regulation of optical stop bands, Adv Mat, 13(2001)1295-1298.

95.   Debord J D, Lyon L A, Thermoresponsive photonic crystals, J Phys Chem B, 104(2000)6327-6331.

96.   Lyon L A, Debord J D, Debord S B, Jones C D, McGrath J G, and Serpe M J, Microgel colloidal crystals, J Phys Chem B, 108(2004)19099-19108.

97.   Valkama S, Kosonen H, Ruokolainen J, Haatainen T, Torkkeli M, Serimaa R, Ten Brinke G, Ikkala O, Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching, Nature Materials, 3(2004)872-876.

Tunable optical submicron structures based on soft matter.pdf
Wolfgang Mönch


Asian Journal of Physics                                                                                                            Vol 25, No 7 (2016) 871-878

Percolation threshold gold films on columnar coatings: characterisation for SERS applications


Armandas Balcytis1, 2, Tomas Tolenis2, Xuewen Wang1, Gediminas Seniutinanas1, Ramutis Drazdys2, Paul R Stoddart3 and Saulius Juodkazis1                                            1Centre for Micro-Photonics, Swinburne University of Technology, John St., Hawthorn, VIC 3122, Australia

2State research institute Center for Physical Sciences and Technology, Savanori¸u ave. 231, Vilnius, Lithuania, LT-02300,

3Faculty of Science, Engineering and Technology, Swinburne University of Technology, John St., Hawthorn, VIC 3122, Australia


Percolation of gold films of ~ 15 nm thickness was controlled to achieve the largest openings during Au deposition. Gold was evaporated on 300-nm-thick films of nanostructured porous and columnar SiO2, TiO2 and MgF2 which were deposited by controlling the angle, rotation speed during film formation and ambient pressure. The gold films were tested for SERS performance using thiophenol reporter molecules which form a stable self-assembled monolayer on gold. The phase retardation of these SERS substrates was up to 5% for wavelengths in the visible spectral range, as measured by Stokes polarimetry. The SERS intensity on gold percolation films can reach ~ 103 counts/(mW.s) for tight focusing in air, while back-side excitation through the substrate has shown the presence of an additional SERS enhancement via the Fresnel near-field mechanism. © Anita Publications. All rights reserved.

Keywords: 3D coatings, Raman sensors, surface enhanced Raman scattering

Total Refs: 15

    1.   Jayawardhana S, Rosa L, Juodkazis S, Stoddart P R, Additional enhancement of electric field in surface enhanced Raman scattering due to

Fresnel mechanism, Sci Rep, 3(2013)2335; doi: 10.1038/srep02335.
    2.   Kabashin A V, Evans P, S. Pastkovsky S, W. Hendren W, Wurtz G A, Atkinson R, Pollard R, V. A. Podolskiy,  Zayats A V, Plasmonic nanorod metamaterials for biosensing, Nature Materials, 8(2009)867-871.
    3.   Nishijima Y, Hashimoto Y, Rosa L, Khurgin J B, Juodkazis S, Scaling rules of SERS intensity, Adv Opt Mat, 2(2014)382-388.
    4.   Nishijima Y, Khurgin J B, Rosa L, Fujiwara H, Juodkazis S, Randomization of gold nano-brick arrays: a tool for SERS enhancement,

Opt Express, 21(2013)13502-13514.
   5.    Sharma A K, Jha R, Gupta B D, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review, Sensors Journal IEEE, 7(2007)1118-1129.
   6.    Stoddart P R, White D J, Optical fibre SERS sensors, Anal Bioanal Chem, 394(2009)1761-1774,.
   7.    Lakhtakia A, Messier R, Sculptured thin films: Nanoengineered Morphology and Optics, (SPIE Press, Bellingham, Washington USA), 2005.
   8.    Messier R, Gehrke T, Frankel C, Venugopal V C, Otano W, Lakhtakia A, Engineered sculptured nematic thin films, J Vac Sci Technol A,

   9.    Lee G J, Lee Y P, Jung B Y, Jung S G, Hwangbo C K, Kim J H, Yoon C K, Microstructural and nonlinear optical properties of thin silver films near the

optical percolation threshold, J Korean Phys Soc, 51(2007)1555-1559.
   10.  Berry H G, Gabrielse G, Livingston A E, Measurement of the Stokes parameters of light, Appl Opt, 16(1977)3200-3205.
   11.  Buividas R, Stoddart P R, Juodkazis S, Laser fabricated ripple substrates for surface-enahnced Raman scattering, Annalen der Physik, 524(2012)L5-L10.
   12.  Balcytis A, Ryu M, Seniutinas G, Juodkazyte J, Cowie B C C, Stoddart P R, Morikawa J, Juodkazis S, Black CuO: Surface-enhanced Raman scattering

and infrared properties, Nanoscale, 7(2015)18299-18304.
   13.  Dinda S, Suresha V, Thoniyot P, Balcytis A, Juodkazis S, Krishnamoorthy S, Engineering 3D nanoplasmonic  assemblies for high

performance in spectroscopic sensing, ACS Appl Mater Interf, 7(2015)27661-27666.
   14.  Jayawardhana S, Rosa L, Buividas R, Stoddart P R, Juodkazis S, Light enhancement in surfaceenhanced Raman scattering at oblique incidence,

Photonic Sensors, 2(2012)283-288.
   15.  Grigorenko A N, Nikitin P I, Kabashin A V, Phase jumps and interferometric surface plasmon resonance imaging, Appl Phys Lett, 75(1999)3917-3919.

Percolation threshold gold films on columnar coatings characterisation for SERS applications.pdf
Armandas Balčytis, Tomas Tolenis, Xuewen Wang, Gediminas Seniutinas, Ramutis Drazdys, Paul R Stoddart and Saulius Juodkazis


Asian Journal of Physics                                                                                                           Vol 25, No 7 (2016) 881-894

Variability of gratings manufactured by interference lithography

Felix Koch1,*, Matthias Burkhardt1, Dennis Lehr1, Mike Schnabel1, Michael Helgert1Renate Fechner2, Frank Frost2, and Tilman Glaser1

1Carl Zeiss Jena GmbH, Microstructured Optics, Jena, Germany

2Leibnitz Institute for Surface Modification, Leipzig, Germany


Diffraction gratings are utilized in many high-end optical systems, including high-resolution low-straylight spectrometers, monochromators for extreme ultraviolet lithography, and high-power ultrashort laser pulse shaping. The gratings have to meet advanced requirements regarding substrate geometry, grating profiles, diffraction efficiency, and scattered light level. In this paper, we show that interference lithography is a versatile and well-adapted fabrication technology, even for today’s most demanding specifications. Key manufacturing aspects namely substrate geometry, exposure setup, exposure, development, etching, and scattering measurement are discussed. The flexibility of interference lithography is demonstrated by realizing spectroscopic gratings with reduced scattered light, a grazing-incidence extreme-ultraviolet grating with a diffraction efficiency of up to 32%, and highly dispersive pulse compression gratings reaching up to 96% efficiency © Anita Publications. All rights reserved.

Keywords: Diffraction gratings, Ultraviolet lithography, Diffraction efficiency

Total Refs: 40 


Asian Journal of Physics                                                                                                           Vol 25, No 7 (2016) 897-906


Efficiency-achromatized reflective dispersion grating by a double-blaze configuration:

Theoretical conditions for optimal material selection

O Sandfuchs1 and R Brunner2,3

1. University of Applied Sciences Hamm-Lippstadt, 59063, Germany

2. University of Applied Sciences, Applied Optics, Jena, 07745, Germany

3.Fraunhofer Institute for Applied Optics and Precision Engineering, Jena, 07745, Germany


Blazed gratings are key components both for imaging and for spectrally analyzing optical systems. However, the blazing effect is very sensitive towards wavelength variations. Double-blazed gratings overcome this disadvantage but have been investigated up to now only for transmission geometries. Here we present a systematical theoretical analysis of the diffraction efficiency of double-blazed gratings in the reflection geometry. We find appropriate conditions for a systematical material selection to achieve efficiency-achromatized blazed gratings, based on fundamental dispersion parameters such as the Abbe’s number and relative partial dispersion of the materials. We discuss how to keep the profile heights as shallow as possible. Therefore, appropriate material combinations which are suitable for spectral blazed gratings have to be found. © Anita Publications. All rights reserved.

Key Words: Blazed gratings, Diffraction efficiency, Abbe’s number

Total Refs: 13

    1.    Ebstein S  M, Nearly index-matched optics for aspherical, diffractive, and achromatic-phase diffractive elements, Opt Lett, 21(1996)1454-1456
    2.    Arieli Y, Noach S, Ozeri S, Eisenberg N, Design of diffractive optical elements for multiple wavelengths, Appl Opt, 37(1998)6174-6177.
    3.    Arieli Y, Ozeri S, Eisenberg T, Noach S, Design of diffractive optical elements for wide spectral bandwidth, Opt Lett, 23(1998)823-824
    4.   Herzig H P, Schilling A, Optical Systems – Design Using Microoptics in Encyclopedia of Optical Engineering, Vol 2, (ed) R G Driggers, (Marcel Dekker), 2003,pp 1830-1842
    5.    Nakai T, Ogawa H, Research on multi-layer diffractive optical elements and their application to camera lenses, in Diffractive Optics and

Micro-Optics, (Technical Digest), 5-7 (2002).
    6.    Brunner R; Transferring diffractive optics from research to commercial applications: Part I – Progress in the patent landscape;

Adv Opt Techn, 2(2013)351-359.
    7.; last visit 01/30/2016
    8.; last visit 01/30/2016
    9.   Sandfuchs O, Schwanke Ch, Burkhardt M, Wyrowski F, R. Brunner R, Modeling adapted to manufacturing aspects of holographic grating structures, J Eur Opt Soc, 6(2011)1-10 .
    10.  O’Shea D C, Suleski T J, Kathman A D, Prather D W, Diffractive Optics – Design, Fabrication, and Test, (SPIE Press), 2004.
    11.  Brunner R “8.1 Diffractive Optical Elements” in Springer Handbook of Lasers and Optics; 2nd Edn,  Frank Träger (Ed.), Springer-Verlag,  (2012).
    12.  Catalog of “Optical Glasses”, Advanced Optics, SCHOTT AG, 2007 (see
    13.  Bäumer S, “Handbook of Plastic Optics”, (Wiley-VCH ), 2010

Efficiency-achromatized reflective dispersion grating by a double-blaze configuration: Theoretical conditions for optimal material selection.pdf
O Sandfuchs and R Brunner


Asian Journal of Physics                                                                                                           Vol 25, No 7 (2016) 907-921

Micro-Optics for Biomimetic Vision Systems

Reinhard Voelkel

SUSS MicroOptics SA, Rouges-Terres 61, CH-2068 Hauterive, Switzerland



Mobile phone cameras are a flagship feature of a flagship device. Customers will always opt for the better or more prestigious camera. The scaling law of optics and the related space bandwidth product (SBP) describe the difficulties to further improve camera resolution without increasing the camera size and thickness. The demand for higher and higher image quality of mobile phone cameras requires new strategies for image capturing sensor systems. When a vision system needs to be very small, very fast orhas to operate with minimum resources, then Nature is an excellent teacher. Nature has struggled with the scaling law of optics since more than 500 million years. The paper summarizes different biomimetic strategies for miniaturization of mobile phone vision systems. © Anita Publications. All rights reserved.

Keywords: Mobile phone camera, Biomimetic strategies, Bandwidth

Total Refs: 22

  1.   Lohmann Adolf W., ‘Scaling laws for lens systems, Appl Opt, 28(1989)4996 -4998.

  2.   Voelkel Reinhard, Zoberbier Ralph, ‘Inside Wafer-Level Cameras, Semicond Intern, February 2009, p. 28 – 32.

  3.   Ozaktas Haldun M, Urey Hakan, Lohmann Adolf W., ‘Scaling of diffractive and refractive lenses for optical computing and interconnections, App Opt, 33(1994)3782 -3789.

  4.   Hofmann C, Die optische Abbildung’, Akademische Verlagsgesellschaft Geest &Portig K.-G., Leipzig (1980).

  5.   Voelkel Reinhard, ‘Natural optical design concepts for highly miniaturized camera systems’, Proc. SPIE 3737, Design and Engineering of Optical Systems II, 548 (August 27, 1999); doi:10.1117/12.360049.

  6.   Snyder A. W., ‘Acuity of compound eyes: physical limitations and design’, Journ. of Comp. Physiology A, Vol. 116, 161-182 (1977).

  7.   Franceschini N., Riehle A., Le Nestour A., ‘Directionally selective motion detection by insect neurons’, in Facets of vision, editors: D. G. Stavenga, R. Hardie, Springer Verlag Berlin, 360-390 (1989).

  8.   Gale M. T., Lehmann H. W., Widmer R. W., ‘Color diffractive subtractive filter master recording comprising a plurality of superposed two-level relief patterns on the surface of a substrate’, US Patent 4155627, (1977).

  9.   Nikon Nano Crystal Coat,, (2010)

10.   Clapham P.B., Hutley M.C., ‘Reduction of lens reflextion by the ‘moth eye’ principle’, Nature 244, 281-282, (03 August 1973); doi:10.1038/244281a0

11.   Rudmann H, Rossi M; ‘Design and fabrication technologies for ultraviolet replicated micro-optics‘. Opt Eng, 43(2004)2575-2582.

12.   Schmitt Holger et. al., ‘Full wafer microlens replication by UV imprint lithography, Microelectronic Engineering, 87 (2010)1074-1076.

13.   Voelkel Reinhard, Duparre Jacques, Wippermann Frank, Dannberg Peter, Braeuer Andreas, Zoberbier Ralph, Hansen Sven, Suess Ralf, Technology trends of microlens imprint lithography and wafer level cameras (WLC)’, 14th Micro-optics conference (MOC‚ 08), 25.–27.9.2008, Brussels, Belgium Techn. Dig. p. 312–315 (2008).

14.   Iga K., Kokubun Y., Oikawa M., ‘Fundamentals of Microoptics: Distributed-Index, Microlens, and Stacked Planar Optics’, Academic Press Inc, ISBN-10: 0123703603 (1984).

15.   Voelkel Reinhard, Herzig Hans Peter, Nussbaum Philippe, Singer Wolfgang, Weible Kenneth J., Daendliker René., Hugle William B., ‘Microlens lithography: a new fabrication method for very large displays’, Asia Display'95, pp. 713-716, (1995).

16.   EU-IST-2001-35366, Project WALORI, ‘WAfer Level Optic solution foR compact CMOS Imager’, (2002-2005), partners: Fraunhofer IOF, CEA LETI, ATMEL, IMT Neuchâtel, Fresnel Optics, SUSS MicroOptics.

17.   Markus Rossi, Ville Kettunen, Heptagon Oy, Espoo (SF), ‘Opto-electronic module and devices comprising the same‘, US 8,674,305, June 25, 2013.

18.   Reinhard Voelkel, Stefan Wallstab, ‘Flat imageacquisitionsystem’, Offenlegungsschrift DE 199 17 890 A1, WO 00/64146, 20.04.1999.

19.   Snapman by Herman Scherling, EP 0906587 B1, (1996)

20.   Frank Wippermann, Andreas Brückner, ‘Ultra-thin wafer-level cameras’, SPIE Newsroom, (2012), DOI: 10.1117/2.1201208.004430.

21.   Brückner A, Leitel R, Oberdörster A, Dannberg P, Wippermann F, Bräuer A, Multi-aperture optics for wafer-level cameras’, J Micro/Nanolith. MEMS MOEMS. 0001; 10(4):043010-043010-10 doi:0.1117/1.3659144 (20111).

22.   KazuichiroItonaga, Sony Corporation, Tokyo (J), ‘Method of manufacturing solid-state imaging element, solid-state imaging element and electronic apparatus’, US 2012/0217606 A1 (2012).



Asian Journal of Physics                                                                                                                Vol 25, No 7 (2016) 923-955

Silicon Photonics Technology : Ten Years of Research at IIT Madras, Chennai, India


B K Das, N Das Gupta, S Chandran, S Kurudi, P Sah, R Nandi, Ramesh K, Sumi R, S Pal, aushal,

S M Sundaram, P Sakthivel, Sidharth R, R Joshi, H Sasikumar, U Karthik,    

S Krubhakar, G R Bhatt, J P George, R K Navalakhe, Narendran R, and I Seethalakshmi

Integrated Optoelectronics Labs, Department of Electrical Engineering, IIT Madras,Chennai - 600 036, India


The integrated optoelectronics research group at IIT Madras has been active since 2007 with a determination towards developing a center of excellence for silicon photonics research. The core research theme involves novel designs, CMOS compatible fabrication process optimizations and subsequent experimental demonstrations leading towards cost-effective, energy-efficient and high-speed optoelectronic interconnects for various applications. As of now, various prototype devices like power splitters, ITU channel interleavers, variable optical attenuators, p-i-n phase shifters/modulators, ring resonators, DBR filters etc., have been demonstrated by exploiting conventional microelectronics technology as well as recently established nano-fabrication facilities at IIT Madras. Their design principle, process development, fabrication and characterizations are described in the present article. © Anita Publications. All rights reserved.

Keywords: Optoelectronics, p-i-n phase shifters/modulators, Ring resonators, DBR filters.

Total Refs: 42

    1.    Goodman J W, Leonberger F I, Kung S Y, Athale R A, Optical interconnections for VLSI systems, Proc IEEE,  72(1984)850-866.
    2.    Miller D A B, Optical interconnects to silicon, IEEE JSTQE, 6(2000)1312-1317.
    3.    Young I A, Mohammed E, Liao J T S, Kern A M, Palermo S, Block B A, Reshotko M R, Chang P L D, Optical I/O technology for tera-scale computing, IEEE J Solid State Circuits, 45(2010)235-248.
    4.    Koehl S, Liu A, Paniccia M, Integrated Silicon Photonics: Harnessing the data explosion, OSA Opt Photon News, 22(2011)24-29.
    5.    Beausoleil R G, Large-scale integrated photonics for high-performance interconnects, ACM JETC,7(2011)6:1-6:54; doi: 10.1145/1970406.1970408
    6.    Sun C, Wade M T, Lee Y, Orcutt J S, Alloatti L, Georgas M S, Waterman A S, Shainline J M, Avizienis R R, in S, Moss B R, Kumar R, Pavanello F, Atabaki A H, Cook H M, Ou A J, Leu J C, Chen Yu-Hsin, Ram R J, Popović M A, Stojanović V M, Single-chip microprocessor that communicates directly using light, Nature, 528(2015)534-538.
   7.    Bowers J, Liang D, Fang A, Park H, Jones R, Paniccia M, Hybrid Silicon lasers: the final frontiers to integrated computing, OSA Opt Photon News, 21(2010)28-33.
    8.    Michel J, Liu J, Kimerling L C, High-performance Ge-on-Si photodetector, Nature Photonics, 4(2010)527-534.
    9.    Thomson D J, Reed G T, Silicon modulators based on free carrier concentration variations, Hand Book of Silicon Photonics, Chapter 9, pp 439-478, 2013 (CRC Press, Taylor & Francis Group).
    10.    Park S, Yamada K, Tscuchizawa T, Watanabe T, Shinojima H, Nishi H, Kou R, Itabashi S, Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides, Opt Express, 18(2010)11282-11291.
    11.    Morichetti F, Melloni A, Ferrari C, Martinelli M, Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delayline, Opt Express, 16(2008)8395-8405.
    12.    Sun P, Reano R M, Sub-milliwatt thermo-optic switches usingfree-standing silicon-on-insulator strip waveguides, Opt Express, 18(2010)8406-8411.
    13.    Suzuki K, Tanizawa K, Matsukawa T, Cong G, Kim S.-H., Suda S, Ohno M, Chiba T, Tadokoro H, Ohno M, Chiba T, Tadokoro H, Yanagihara M, Igarashi Y, Masahara M, Namiki S, Kawashima H, Ultra-compact 8× 8 strictly- non-blocking Si-wire PILOSS switch, Opt Express, 22(2014)3887-3894.
    14.    Dong P, Qian W, Liang H, Shafiiha R, Feng D, Li G, Cunningham J E, Krishnamoorthy A V, Asghari M, Thermally tunable siliconracetrack resonators with ultralow tuning power, Opt Express, 18(2010)20298-20304.
    15.    Leuthold J, Koos C, Freude W, Nonlinear silicon photonics, Nature Photonics, 4(2010)535-544.
    16.    Navalakhe R K, Gupta Nandita Das, Das B K, Fabrication and Characterization of Straight and Compact S-bend Optical Waveguides on a

Silicon-on-Insulator Platform, App Opt, 48(2009)G125-G130.
    17.    George J P, Dasgupta N, Das B K, Compact integrated optical directional coupler with large cross section silicon waveguides,

Proc SPIE, 7719(2010)77191X-77191X.
    18.    Bhatt G R, Das B K, Demonstration of ITU channel interleaver in SOI with large cross section single mode waveguides,

Proc SPIE, 8069(2011)806904-806904.
    19.    Krubhakar I S, Narendran R, Das B K, Design and fabrication of integrated optical 1x8 power splitter in SOI substrate using large cross-section single-mode waveguides, Proc SPIE, 8173(2011)81730C;doi:1117/12.898475
    20.    Bhatt G R, Sharma R, Karthik U, Das B K, Dispersion-Free SOI Interleaver for DWDM Applications, J Lightwave Tech, 30(2012)140-146.
    21.    Bhatt G R, Das B K, Improvement of polarization extinction in silicon waveguide devices, Opt Commun, 285(2012)2067-2070.
    22.    Chandran S, Das B K, Tapering and Size Reduction of Single-mode Silicon Waveguides by maskless RIE", OECC 2012 - OptoElectronics Communication Conference, Bexco, Busan Korea, July 02-06, 2012.
    23.    Sasikumar H, Venkitesh D, Das B K, Highly efficient DBR in silicon waveguides with eleventh order diffraction, SPIE Photonics West 2013,

San Francisco, CA, USA, 2-7 February 2013 (Paper 8629-16)
    24.    Karthik U, Das B K, Polarization-independent and dispersion-free integrated optical MZI in SOI substrate for DWDM applications, SPIE Photonics West 2013, San Francisco, CA, USA, 2-7 February 2013 (Paper 8629-35).
    25.    Sakthivel P, Dasgupta N, Das B K, Simulation and experimental studies of diffusion doped p-i-n structures for silicon photonics, SPIE Photonics West 2013, San Francisco, CA, USA, 2-7 February 2013 (Paper 8629-33).
    26.    Joshi R, B K, Gupta N D, Design of 2D Photonic crystals for integrated optical slow light applications, IWPSD-2013, Noida, India, Dec 2013.
    27.    Chandran S, Kaushal S, Das B K, Monolithic integration of micron to submicron waveguides with 2D mode-size converters in SOI platform, (Invited Talk), SPIE Photonics West 2014, San Francisco, CA, USA, 1-6 Feb 2014.
    28.    Ravindran S, Das B K, Design and fabrication of 8-channel AWGs with 2-μm-SOI for optical interconnects, SPIE Photonics West 2014, San Francisco, CA, USA, 1-6 February 2014.
    29.    Ravindran S, Das B K, Modeling and Phase Error Analysis of AWG in SOI using Gaussian Beam Approximation, 12th International Conference on Fibre Optics and Photonics, Kharagpur, India , 13-16 December 2014 (Paper- T3A.67).
    30.    Kaushal S, Das B K, Design of maximally flat delay lines using apodized CROW structure in SOI, 12th International Conference on Fibre Optics and Photonics, Kharagpur, India , 13-16 December 2014 (Paper- 4B.3).
    31.    Sidharth R, Das B K, Semi-analytical model of arrayed waveguide grating in SOI using Gaussian beam approximation, Appl Opt, 54(2015)2158-2163.
    32.    Chandran S, Das B K , Surface trimming of silicon photonics devices using controlled reactive ion etching chemistry, Photonics and Nanostructures – Fundamentals and Applications, 15(2015)32-40.
    33.    Chandran S, Sundaram S M, Das B K, Method and apparatus for modifying dimensions of a waveguide, Patent Filed – 3799/CHE/2015.
    34.    Celler G K, Cristoloveanu Sorin, Frontiers of silicon-on-insulator, J Appl Phys, 93(2003)4955-4978.
    35.    Hsu S.-H, Tseng S.-C, You H.-Z, Birefringence characterization on soi waveguide using optical low coherence interferometry, in 7th IEEE

International Conference on Group IV Photonics, 2010.
    36.    Khilo A, Popovi´c M A, Araghchini M, Kärtner F X, Efficient planar fiber-to-chip coupler based on two-stage Silicon Photonics Technology: Ten Years of Research at IIT Madras 955 adiabatic evolution, Opt Express, 18(2010)15790-15806.
    37.    Asghari M, Krishnamoorthy A V, Silicon photonics: Energy-efficient communication, Nature Photonics, 5(2011)268-270.
    38.    Bogaerts W, Heyn P De, Vaerenbergh T Van, Vos K De, Selvaraja S Kumar, Claes T, Dumon P, Bienstman P, Thourhout D Van, Baets R,

Silicon microringresonators, Laser & Phot Rev, 6(2012)47-73.
    39.    Xu Dan-Xia, Densmore A, Waldron P, Lapointe J, Post E, Delâge A, Janz S, Cheben P, Jens P, Schmid H, Lamontagne B, High bandwidth SOI

photonic wire ringresonators using MMI couplers, Opt Express, 15(2007)3149-3155.
    40.    Thomson D J, Hu Y, Reed G T, Fedeli Jean-Marc,Low Loss MMI Couplers for High Performance MZI Modulators, IEEE Photonics Technology Letters, 22(2010)1485-1487.
    41.    Pathak S, Vanslembrouck M, Dumon P, Thourhout D V, Bogaerts W, Optimized Silicon AWG With Flattened Spectral Response Using an MMI Aperture, J Lightwave Tech, 31(2013)87-93.
    42.    Soldano L B, Pennings E C M, Optical multi-mode interference devices based on self-imaging: principles and applications, J Lightwave

Techy, 13(1995)615-627.

Silicon Photonics Technology : Ten Years of Research at IIT Madras.pdf
B K Das and et al


Asian Journal of Physics                                                                                                                Vol 25, No 7 (2016) 00-00

Variety of gratings manufactured by interference lithography

Felix Koch1,*, Matthias Burkhardt1, Dennis Lehr1, Mike Schnabel1, Michael Helgert1,
Renate Fechner2, Frank Frost2, and Tilman Glaser1

1Carl Zeiss Jena GmbH, Microstructured Optics, Jena, Germany

2Leibniz Institute of Surface Modification, Leipzig, Germany


Diffraction gratings are utilized in many high-end optical systems, including high-resolution low-straylight spectrometers, monochromators for extreme ultraviolet lithography, and high-power ultrashort laser pulse shaping. The gratings have to meet advanced requirements regarding substrate geometry, grating profiles, diffraction efficiency, and scattered light level.  In this paper, we show that interference lithography is a versatile and well-adapted fabrication technology, even for today’s most demanding specifications. Key manufacturing aspects namely substrate geometry, exposure setup, exposure, development, etching, and scattering measurement are discussed. The flexibility of interference lithography is demonstrated by realizing spectroscopic gratings with reduced scattered light, a grazing-incidence extreme-ultraviolet grating with a diffraction efficiency of up to 32%, and highly dispersive pulse compression gratings reaching up to 96% efficiency. © Anita Publications. All rights reserved.

Keywords: Diffraction gratings, Ultraviolet lithography, Diffraction efficiency


  1.   Voronov D L, Anderson E H, Cambie R, Gawlitza P, Goray L I, Gullikson E M, Padmore H A, Development of near atomically perfect diffraction gratings for EUV and soft x-rays with very high efficiency and resolving power, . Phys: Conf Ser, 425(2013)152006;

  2.   Nakano N, Kuroda H, Kita T, Harada T, Development of a flat-field grazing-incidence XUV spectrometer and its application in picosecond XUV spectroscopy, Appl Opt, 23(1984)2386-2392.

  3.   Lin H, Li L, Fabrication of extreme-ultraviolet blazed gratings by use of direct argon-oxygen ion-beam etching through a rectangular photoresist mask, Appl Opt, 47(2008)6212-6218.      

  4.   Ricci L, Weidemüller M, Esslinger T, Hemmerich A, Zimmermann C, Vuletic V, Hänsch T W, A compact grating-stabilized diode laser system for atomic physics, Opt Commun, 117(1995)541-549        

  5.   Struckmeier J, Euteneuer A, Smarsly B, Breede M, M. Born, Hofmann M, Hildebrand L, Sacher J, Electronically tunable external-cavity laser diode, Opt Lett, 24(1999)1573-1574.

  6.   Daneu V, Sanchez A, Fan T Y, Choi H K, Turner G W, Cook C C, Spectral beam combining of a broad-stripe diode laser array in an external cavity, Opt Lett, 25(2000)405-407.

  7.   Weiner A M, Heritage J P, Kirschner E M, High-resolution femtosecond pulse shaping, J Opt Soc Am B, 5(1988)1563-1572.

  8.   Rowland H A, LXI. Preliminary notice of the results accomplished in the manufacture and theory of gratings for optical purposes, Philos Mag, 5(1882)469-474.                                      

  9.   Cordelle J, Flamand J, Pieuchard G, Labeyrie A, Aberration-corrected concave gratings made holographically, Proc Optical Instruments and Techniques,1(1969)117-124.

10.   Harada T,  Kita T, Mechanically ruled aberration-corrected concave gratings, Appl Opt, 19(1980)3987-3993.

11.   Bittner R F, Concave Holographic Gratings Used As Monochromators, Proc SPIE 0655,  International Symposium/Innsbruck,10.1117/12.938430(1986).       

12.   Dobschal H J, Kröplin P, Reichel W, Rudolf K, Konkave Reflexionsbeugungsgitter mit abbildenden Eigenschaften aus dem Kombinat VEB Carl Zeiss JENA, Jenaer Rundschau, 4(1989)196-197.

13.   Glaser T, High-end spectroscopic diffraction gratings: design and manufacturing, Adv Opt Techn, 4(2015)25-46.

14.   Popov E, Bozkov B, Sabeva M, Maystre D, Blazed holographic grating efficiency-numerical comparison with different profiles, Opt Commun, 117(1995)413-416.

15.   Bittner R, Holographische Gitter als Dioden-Zeilen-Spektrographen. Optik, 64(1983)185-199.   

16.   Levinson Harry J, Principles of lithography, (SPIE, Bellingham, Washington 98227-0010 USA), 2005.

17.   Schlemmer H H, Machler M, Diode array spectrometer: an optimised design, J Phys E: Sci Instrum, 18(1985)914-919.

18.   Neviere M, Petit R, Electromagnetic theory of gratings, ( Springer-Verlag,Tiergartenstrasse 17. Heidelberg, Germany), 1980, p 20. 

19.   Nevière M, Popov E, Light propagation in periodic media: differential theory and design, (Marcel Dekker, 270 Madison Av. New York, USA), 2002.

20.   Popov E, Gratings: theory and numeric applications, (Popov, Institut Fresnel, Université d’Aix-Marseille, (CNRS, Faculté Saint Jérôme,13397 Marseille Cedex 20), 2014.

21.   Sandfuchs O W, Schwanke C, Burkhardt M, Wyrowski F, Gatto A, Brunner R, Modelling adapted to manufacturing aspects of holographic grating structures, JEOS, 6 (2011)11006-1-1106-10; doi:10.2971/jeos.2011.11006

22.   Loewen E G, Popov E, Diffraction gratings and applications, (Marcel Dekker, 270 Madison Av. New York, USA), 1997.

23.   Nicodemus F E, Richmond J C, Hsia J J, Ginsberg I W, Limperis T, Geometrical considerations and nomenclature for reflectance, US Department of Commerce, National Bureau of Standards Washington, D. C, 1977.

24.   Sharpe M R, Irish D, Stray light in diffraction grating monochromators, Opt Acta, 25(1978)861-893.  

25.   Stover J C, Optical scattering: measurement and analysis, Vol 2, (SPIE, Bellingham, Washington 98227-0010 USA), 2005

26.   Neviere M, Flamand J, Electromagnetic theory as it applies to X-ray and XUV gratings, Nucl Instr Meth,Phys, 172(1980)273-279.

27.   Weiner A, Ultrafast Optics, Vol 72, (John Wiley & Sons), 2011.

28.   Clausnitzer T, Kämpfe T, Kley E B, Tünnermann A, Peschel U, Tishchenko A V, Parriaux O, An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings, Opt Express, 13(2005)10448-10456.

29.   Clausnitzer T, Limpert J, Zöllner K, Zellmer H, Fuchs H.-J, Kley E.-B, Tünnermann A, Jupé M, Ristau D, Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems, Appl Opt, 42(2003)6934-6938.             

30.   Stuerzebecher L, Fuchs F, Harzendorf T, Zeitner U D, Pulse compression grating fabrication by diffractive proximity photolithography, Opt Lett, 39(2014)1042-1045.

31.   Clausnitzer T, Kämpfe T, Kley E.-B, Tünnermann A, Tishchenko A.-V, Parriaux O, Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency, Opt Express, 16(2008)5577-5584.

32.   Nagashima K, Kosuge A, Ochi Y, Tanaka M, Improvement of diffraction efficiency of dielectric transmission gratings using anti-reflection coatings, Opt Express, 21(2013)18640-18645.

33.   Perry M D, Shannon C, Shults E, Boyd R D, Britten J A, Decker D, Shore B W, High-efficiency multilayer dielectric diffraction gratings, Opt Lett, 20(1995)940-942.          

34.   Shore B W, Perry M D, Britten J A, Boyd R D, Feit M D, Nguyen H T, Chow R, Loomis G E, Lifeng Li, Design of high-efficiency dielectric reflection gratings, J Opt Soc Am A, 14(1997)1124-1136.             

35.   Hehl K, Bischoff J, Mohaupt U, Palme M, Schnabel B, Wenke L, Bödefeld R, Theobald W, Welsch E, Sauerbrey R, Heyer H, High-efficiency dielectric reflection gratings: design, fabrication, and analysis, Appl Opt, 38(1999)6257-6271.    

36.   Rumpel M, Moeller M, Moormann C, Graf T, Ahmed M A, Broadband pulse compression gratings with measured 99.7% diffraction efficiency, Opt Lett, 39(2014)323-326.

37.   Neauport J, Bonod N, Hocquet S, Palmier S, Dupuy G, Mixed metal dielectric gratings for pulse compression, Opt Express, 18(2010)23776-23783       

38.   Flury M, Tishchenko A V, Parriaux O, The leaky mode resonance condition ensures 100% diffraction efficiency of mirror-based resonant gratings, J Lightwave Technol, 25(2007)1870-1878.

39.   Laskin A, Williams G, McWilliam R, Laskin V, Applying field mapping refractive beam shapers to improve holographic techniques, Proc. SPIE 8281, Practical Holography XXVI: Materials and Applications, 82810K (2012).

40.   Burkhardt M, Steiner R, Gatto A, Sinzinger S, Interferenzlithografie mit gesteuerter Belichtungsverteilung, Proc DGAO, 114.2013(2013)43-44



All rights reserved