An International Research Journal

AJP

SSN : 0971 - 3093

Vol 26, No 1, January, 2017

Guest Editorial

Recent advances in trap based precision measurement and application

It gives me immense pleasure to introduce this special issue of the Asian Journal of Physics on “Recent advances in trap based precision measurement and application”. The advancement of  ion trap physics is a continuous process and always there is something new happening. However, it is appropriate to periodically update the progress made over certain period of time. Therefore, when I was requested by the editor-in-chief Dr. Vinod Rastogi to compile a special topical edition of AJP, I was convinced that it should be on the progress made in terms of precision measurements using trapped ions over half a decade.

Traditionally ion trap has been the forerunner in wide range of physics applications: mass spectrometry, atomic spectroscopy, nuclear decay studies, quantum information processing, and quantum computation to name a few. In more recent times ion trap based single atom clock is becoming a strong contender to replace atomic fountain based atomic clocks. Similarly, quantum simulators are becoming  reality raising hopes of achieving what Richard Feynman had long dreamt of and what Erwin Schrodinger thought it to be impossible. The simulators at present can perform basic simulation with only a few ions thereby only addressing problems which are toy models. However, with the theoretical scope of investigating vast range of interesting condensed matter as well as field theoretic problems, the challenges before experiment is getting more exciting. An experiment on ion trap based precision spectroscopy has recently probed the Lorentz invariance symmetry with unprecedented accuracy. However, probing the Standard Model of particle physics or looking beyond it has so far been restricted to atomic beam experiments which are dodged by the systematics related to field inhomogeneity in the experimental volume. Ion trap promises to surpass the precision of these experiments and in recent times made considerable progress in that direction. The other major aspect in which the field is expanding and becoming multi-disciplinary is the field of ion trap development to achieve scalability. This requires strong collaboration between ion trap groups and material science groups which are already bearing some fruits in terms of new trap design which are robust against ion shuttling. Needless to say these are only a few aspects in which tremendous progress has been made over the last five years. A vast majority of the progress has not been discussed here due to constrain and hence it only provides glimpse of the whole picture.   

Fortunately, we could cover a wide range of topics from ion clocks to discreet symmetry probes, all using trapped ion. However, it is a minuscule of the actual advancement made over the last five years. It took a while than expected to finally publish this issue, nevertheless, tireless effort from a small editorial team has done an excellent job in getting the issue organized. I would like to thank all the authors who have contributed to this special issue and have shown immense patience. Most importantly I am personally thankful to the editorial team for their hard work behind the scene. I apologize for the delay in getting this special issue published but do hope that it will provide a wider insight in the ion trap physics in the domain of precision spectroscopy. 

 

Manas Mukherjee

 


Asian Journal of Physics                                                                                                    Vol. 26 No 1, 2017, 01-07


Spectroscopy of 176Lu+

 

Samuel Wang, Rattakorn Kaewuam, Arpan Roy, K J Arnold, and M D Barrett

Centre for Quantum Technologies and Department of Physics

National University of Singapore, 3 Science Drive 2, 117543 Singapore

___________________________________________________________________________________________________________________________________

We report spectroscopy of the low-lying 5d6s 3D1, 5d6s 3D2, and 6s6p 3P1 levels of 176Lu+ relative to the 6s21S0 ground state.  The hyperfine structure for each level, the allowed electric dipole transitions, and clock transitions between the S and D states are all determined to the ~MHz level of accuracy. These measurements provide a useful starting point for establishing optical clock operation with this isotope.  © Anita Publications. All rights reserved.

Total Refs: 10

spectroscopy of Lu+.pdf
Samuel Wang, Rattakorn Kaewuam, Arpan Roy, K J Arnold and M D Barrett

___________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                   Vol 26, No 1, 2017, 09-19

 

A measurement of the strongly forbidden 6S1/2  5D3/2 magnetic dipole transition dipole transition moment in Ba+


Spencer R Williams, Anupriya Jayakumar, Mathew R Hoffmann, Boris B Blinov and E N Fortson

 Department of Physics, University of Washington, Seattle, Washington, 98195, USA

___________________________________________________________________________________________________________________________________

We report the results from our first-generation experiment to measure the magnetic-dipole transition moment (M1) between the 6S1/2 and 5D3/2 manifolds in Ba+. Knowledge of M1 is crucial for the proposed parity-nonconservation experiment in the ion [1], where M1 will be a leading source of systematic error. To date, no measurement of M1 has been made in Ba+, and moreover, the sensitivity of the moment to electron-electron correlations has confounded accurate theoretical predictions. A precise measurement may help to resolve the theoretical discrepancies while providing essential information for planning a future PNC measurement in Ba+. We demonstrate our technique for measuring M1 - including a method for calibrating for stress-induced birefringence introduced by the scientific apparatus - and report our first measurement yielding M1 = 93 + 38 – 40 × 10–5μB. © Anita Publications. All rights reserved.

Keywords: Barium, Spectroscopy, Forbidden transitions, Parity Non-Conservation

Total Refs: 26

measurement of the strongly forbidden 6S1/2 ↔ 5D3/2 magnetic dipole transition dipole transition moment in Ba+.pdf
Spencer R Williams, Anupriya Jayakumar, Mathew R Hoffmann, Boris B Blinov and E N Fortson

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                Vol. 26 No 1, 2017, 21-26

 

Quantum engine cycles and shape of the trap

 

Dario Poletti

Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore and

MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore

___________________________________________________________________________________________________________________________________

We review some critical aspects related to the shape of traps confining a gaseous working fluid and its consequences on the performance of quantum engines cycles. We show that when the gas trapping potential has a particular shape, the state of the gas can remain thermal after a quantum adiabatic transformation. We then discuss the comparison of engine cycles for gases confined in traps of different geometrical forms. We conclude by analyzing the interplay between the quantum statistics of the particles constituting the working fluid and the shape of the trap. © Anita Publications. All rights reserved.

Keywords: Quantum thermodynamics, Ion traps

Total Refs : 32

Quantum engine cycles and shape of the trap.pdf
Dario Poletti

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                         Vol 26, No 1, 2017, 27-32

 

Magnetic field calibration using a single barium ion


S Das1, D De Munshi1, N V Horne1, P Liu1, M Mukherjee1, 2, 3, and D Yum1, 2

 1Centre for Quantum Technologies, National University Singapore, Singapore 117543

2Department of Physics, National University Singapore, Singapore 117551

3MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore

____________________________________________________________________________________________________________________________________

A single atom as a probe to an external field can provide both high resolution as well as precision. In this article the use of a single trapped and laser cooled ion as a probe of   magnetic field magnitude as well as direction is discussed. We show that the highest precision can be obtained by Zeeman shift measurements involving dipole forbidden transition, however zero field calibration can be done with moderate precision involving fast dipole transitions. © Anita Publications. All rights reserved.

Keywords: Laser cooled ion, Zeeman shift, Dipole transitions.

Total Refs: 21

Magnetic field calibration using a single barium ion.pdf
S Das, D De Munshi, N V Horne, P Liu, M Mukherjee and D Yum

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                         Vol 26, No 1, 2017, 35-57


Surface ion trap for barium ion - the industrial way


S Das1, Y Ren2 and M Mukherjee1,2,3

1Centre for Quantum Technologies, National University Singapore, Singapore 117543

2Department of Physics, National University Singapore, Singapore 117551

3MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore

___________________________________________________________________________________________________________________________________

Ion trap is the fore-runner in the field of quantum information, communication and computation. Therefore, miniaturization and integration of these devices forms an important field of research towards making this technology scalable. The most scalable architecture of an ion trap processor is a surface trap design. Technologically, there exists well developed commercial techniques for micro-fabrication. However, the goal of this article is to explore to what extent these commercial approaches can be directly implemented in developing planar surface ion traps.© Anita Publications. All rights reserved.

Keywords: Ion trap, Quantum information, Cryogenic cooling

Total Refs: 30

Surface ion trap for barium ion - the industrial way.pdf
S Das, Y Ren and M Mukherjee

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                         Vol 26, No 1, 2017, 59-68


Study of spatial distribution of large ion clouds and the influence of geometrical perturbations

in order to efficiently trap short lived radioactive  nuclei in a Paul trap


Pushpa M Rao

Atomic and Molecular Physics Division

Bhabha Atomic Research Centre, Mumbai 400 085, India

___________________________________________________________________________________________________________________________________

Ions can be confined within the stability region over a wide range of applied potentials as here they would exhibit stable trajectories. But in the case of a large number of trapped ions, several types of interactions and perturbations play a vital role, leading to shift in the stability region and also a change in the ion oscillation frequencies. A review of the detailed study of the dynamics and behavior of large ion clouds and the effect of geometrical perturbations leading to a non-ideal trap is presented. These studies are a prerequisite to, efficient trapping and detection of relatively short lived radioactive 146Eu generated at the accelerator site which is also reviewed in this paper. Studies of the mass dependent ion oscillation frequencies show that the ions trapped have a mass number 146 amu and this was confirmed by similar measurements carried out on trapped barium and potassium ions. A review of the studies of spatial density distributions of large ion cloud is also presented. These studies help in obtaining the most suitable trapping potential so that the maximum path length for Laser- ion cloud interaction is achieved thereby increasing the detection sensitivity enormously. © Anita Publications. All rights reserved..

Keywords: Ion Trap, Ion Cloud, Ion Oscillation frequency

Total Refs: 26

Study of spatial distribution of large ion clouds and the influence of geometrical perturbations....pdf
Pushpa M Rao

___________________________________________________________________________________________________________________________________

© ANITA PUBLICATIONS

All rights reserved