An International Research Journal

AJP Vol 27 No 1, 2018

AJP

SSN : 0971 - 3093

Vol 27, No 1, January, 2018

 

Asian Journal of Physics                                                                                                       Vol. 27 No 1, 2018, 01-12


Information Transmission with Quantum Limited Subspace


Francis T S Yu
Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802,USA

ftypsu@gmail.com

____________________________________________________________________________________________________________________________________

One important aspect of our universe is that one cannot get something from nothing; there is always a price to pay. In this article we show that every bit of information is limited by a quantum unit.  Since we are communicating within a temporal subspace, this unit can be equivalently described as a quantum limited subspace (QLS), as imposed by the Heisenberg Principle. We show that communication can be exploited within and outside the QLS. The size of a QLS is determined by carrier signal bandwidth; that is narrower the bandwidth the larger the size of the QLS. By manipulating the size of a QLS, more efficient information transmission strategies can be developed.  Examples for inside and outside QLS communication are given. Extension to relativistic communication has also been demonstrated.  We remark that, a new era of communication is anticipated to immerge and it will change our way in communicating, observation and computing, we used to use forever! © Anita Publication. All rights reserved.

Total Refs : 17

    1.  Yu F T S, Time: The Enigma of Space, Asian J Phys, 26(2017)149-158.
    2.   Heisenberg W, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschrift für Physik, 43(1927)172-198.
    3.   Gabor D, Communication Theory and Physics, Phil Mag, 41(1950)1161-1187; doi.org/10.1080/14786445008561157
    4.   Yu F T S, Science and the Myth of Information, Asian J Phys, 24(2015)1823-1836.
    5.   Yu F T S, Entropy and Information Optics: Connecting Information and Time, 2nd edn, (Boca Raton, Fl, CRC Press), 2017.
    6.   Yu F T S, Introduction to Diffraction, Information Processing and Holography, (MIT Press, Cambridge, Mass), 1973.
    7.   Yu F T S, Time-Space Quantum Entanglement, Asian J Phys, 26(2017)285-290.
    8.   Schrödinger E, Discussion of probability relations between separated systems, Mathematical Proceedings of the Cambridge Philosophical Society,

          31(1935)555-563.
    9.   Schrödinger E, Probability relations between separated systems, Mathematical Proceedings of the Cambridge Philosophical Society, 32(1936)446-452.
   10.  Lu C Y, Yang T, Pan J W, Experimental Multiparticle Entanglement Swapping for Quantum Networking, Phys Rev Lett, 103(2009)020501; doi.org/10.1103

          /PhysRevLett.103.020501
   11.  Cultrona L J, Leith E N, Porcello L J, Vivian W E, On the application of Coherent Optical Processing Techniques to Synthetic-Aperture Radar, Proc IEEE,

          54(1966)1026-1026 - 1032; 10.1109/PROC.1966.4987
   12.  Kraus J D, Antennas, (McGraw-Hill Book Company, Inc., New York), 1950.
   13.  Goldstein R M, Zebker H A, Werner C L, Satellite radar interferometry: Two-dimensional phase unwrapping, Radio Science, 23(1988)713-720;  

          doi.org/10.1029/RS023i004p00713.

   14.  Yu F T S, Tai A M, Chen H, One-step Rainbow Holography: Recent Development and Application, Optical Engineering, 19(1980)666-678.
   15.  Einstein A, Relativity, The Special and General Theory, (Crown Publishers, New York), 1961.
   16.  Shannon C E, Weaver W, The Mathematical Theory of Communication, (University of Illinois Press, Urbana), 1949.
   17.  Dunn D, Yu T S, Chapman C D, Some Theoretical and Experimental Analysis with the Sound Spectrograph, Communication Sciences Laboratory, Report 7,

          University of Michigan, August, 1966.

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                       Vol. 27 No 1, 2018, 13-21


Growth of KDP crystal by automatic temperature controlled seed rotation method

 

Vikrama, N Vijayana, Ravindraa, Soniaa, Mahaka, and Apurvab

aCSIR- National Physical laboratory, New Delhi-110 012, India

bJamia Millia Islamia, New Delhi-110 025, India

___________________________________________________________________________________________________________________________________

In the recent past, nonlinear optical (NLO) materials are getting attention because of their excellent applications in the area of fiber optics communication and optical signal processing. The NLO crystals can be  grown by different methods at a desired temperature. A variety of methods of crystallization from solutions can be classified in accordance with the conditions under which they are used. In this article, we describe the fabrication of a bidirectional seed rotation apparatus to grow bulk size single crystals. We have designed the automation circuit which will detect and control the temperature during seed rotation process. The aim of the present work is to grow the single crystal of KDP by seed rotation method. In order to study the properties of the crystal, the grown crystal is subjected to various studies. The PXRD study indicated that the grown crystal has good crystallinity and single phase nature. From the photoluminiscence spectrum it was found that the emission maximum occurs at 405 nm. © Anita Publications. All rights reserved..

Keywords: NLO Materials, Seed rotation controller, Photoluminescence, Micro hardness. Etching study

References
    1.    Krishna A,Vijayan N, Bagdi C, Thukral K, Sonia, Haranath D, Maurya K K, Bhagavannarayana G, Cryst Eng Comm, 18(2016)4844-4850.
    2.    Parasuraman K, Selvaraj R S, Murugesan K S, Kanagadurai R, Boaz B M, Optik, 126(2015)4516-4522.
    3.    Saravanan M, Rajasekar S A, Optical Materials, 54(2016)217-228.
    4.    Basu S, Industrial & Engineering Chemistry Product Research and Development, 23(1984)183-186.
    5.    Arizmendi L, Phys Status Solid A, 201(2004)253; doi.org/10.1002/pssa.200303911
    6.    Rajesh N P, Kannan V, Raghavan P Santhana, Ramasamy P, Lan W, Materials Letters, 52(2002)326-328; doi: 10.1016/S0167-577X(01)00415-3.
    7.    Akhtar F, Podder J, J Crystallization Process and Technology, 1(2011)55-62.
    8.    Dolzhenkova E F, Kostenyukova E I, Bezkrovnaya O N, Pritula I M, J Crystal Growth, 478(2017)111-116.
    9.    Shakir M, Ganesh V, Vijayan N, Riscob B, Kumar A, Rana D K, Khan M S, Hasmuddin M, Wahab M A, Babu R R, Bhagavannarayana G, Spectrochim

           Acta, A103(2013)199-204.
    10.  Amgalan M, Prasanyaa T, Haris M, Batdemberel G, In Strategic Technology (IFOST), IEEE, 1(2013)87-90.
    11.  Freeda T H, Mahadevan C, Pramana:Journal of Physics,57(2001)829-836.
    12.  Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S, Tian Y, Phys Rev Lett, 91(2003)015502-1; https://
doi.org/10.1103/PhysRevLett.91.015502. 
    13.  Yadav H, Sinha N, Goel S, Singh B, Bdikin I, Saini A, Gopalaiah K, Kumar B, Acta Cryst B, 73(2017)347-359.
    14.  Kunjomana A G, Chandrasekharan K A, Crystal Research and Technology, 40(2005)782-785. 

Growth of KDP crystal by automatic temperature controlled seed rotation method.pdf
Vikram, N Vijayan, Ravindra, Sonia, Mahak and Apurva

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                       Vol. 27 No 1, 2018, 23-34


Theoretical investigations on NLO crystal 1-[4-(methylsulfanyl) phenyl]-3-(4-nitrophenyl) prop-2-en-1-one

 

Mahesh Pal, Singh Yadav1 and Anuj Kumar2*

1Department of Physics, A.P.M.(P.G.) Degree college, Ujhani (Budaun), 243639,UP, India.

2Department of Physics, C.C.S. University, Meerut, 250005, UP, India.

___________________________________________________________________________________________________________________________________

In order to broaden the understanding of nonlinear behavior of a chalcone derivative nonlinear optical crystal 1-[4-(methylsulfanyl) phenyl]-3-(4-nitrophenyl) prop-2-en-1-one (4MPNP), we have made theoretical investigations on structure, natural bond orbital (NBO), nonlinear response and other properties of this molecule. The theoretical interpretation of nonlinear behaviour is made by calculating ground state and dispersion tensor components of hyperpolarizabilities using density functional theory (DFT) and HF methods employing 6-31G(d,p) basis set and Becke’s three-parameters hybrid functional (B3LYP). The effect of electron donor and acceptor groups on charge conjugation across the backbone is evaluated using NBO analysis and it is correlated with nonlinear behavior of the molecule. Other properties like Molecular electrostatic potential, Mulliken atomic charge distribution over the molecule and thermodynamical parameters are calculated and explained for understanding structure property relation. © Anita Publications. All rights reserved.

Keywords: Nonlinear optical crystal, DFT, NBO,Hyperpolarizabilities

References
    1.    Maryam T, Romanov D A, Levis R J, J Phys B: At Mol Opt Phys, 48(2015)094019; doi.org/10.1088/0953-4075/48/9/094019   
    2.    Raghavendra S, Chidankumar C S, Jayarama A, Dharmaprakash S M, Materials Chemistry and Physics, 149(2015) 487-494.
    3.    Kumar A, Yadav M P S, Pramana – J Phys, 89(2017)18. doi:10.1007/s12043-017-1407-y.
    4.    Ravindra H J, Kiran A J, Nooji S R, Dharmaprakash S M, Chandrasekharan K, Kalluraya B, Rotermund F, J Cryst Growth, 310(2008)2543-2549.
    5.    Gu B, Ji W, Patil P S, Dharmaprakash S M, J Appl Phys, 103(2008)103511; doi.org/10.1063/1.2924419
    6.    Kamath L, Manjunatha K B, Shettigar S, Umesh G, Narayana B, Samshuddin S, Sarojini B K, Opt. Laser Technol, 56(2014)425-429.
    7.    Tutt LW, Boggess T F, Prog Quant. Electr, 17(1993)299-338.
    8.    Patil P S, Dharmaprakash S M, Ramakrishna K, Fun H K, Santosh Kumar R S, Rao Narayana D, J Cryst Growth, 303(2007)520-524.
    9.    Yadav M P S, Kumar A, Jayarama A, Monatsh Chem, 147(2016)1045-1061.
    10.  Vijayakumar P, Anandha Babu G, Ramasamy P, Materials Research Bulletin, 47(2012)957-962.
    11.  Ramachandra Raja C, Joseph A A, Materials Letters, 64(2010)108-110.
    12.  Raghavendra S, Kumar K Anil, Shetty T C S, Dharmaprakash S M, J Mol Struct, 1074(2014)653-659.
    13.  Yadav M P S, Kumar A, Pramana – J Phys, 89(2017)7; doi: 10.1007/s12043-017-1397-9.
    14.  Prasad P N, Williams D J, Introduction to Nonlinear Optical Effects in Molecules and Polymers. (Wiley New York), 1991.
    15.  Nakano M, Minami T, Fukui H, Kishi R, Shigeta Y, Champagne B, J Chem Phys,136(2012)024315; doi: 10.1063/1.3675684
    16.  Frisch M J, Trucks G W, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G,  Barone V, Mennucci B, Petersson G A,

           Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J,  Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K,  Fukuda R, Hasegawa J, 

           Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A (Jr), Peralta J E, Ogliaro F, Bearpark M,  Heyd J J,  Brothers E, Kudin K N,

           Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A,  Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene

           M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O,  Austin A J, Cammi R, Pomelli C, Ochterski J W,  Martin

           R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D,  Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox

           D J, Gaussian, Inc., Wallingford CT, 2010.
    17.  Lee C T, Yang W T, Parr R G, Phys Rev B, 37(1988)785; doi.org/10.1103/PhysRevB.37.785
    18.  Parr R G, Yang W, Density Functional Theory of Atoms and Molecules. (Oxford University Press New York) 1989.
    19.  Becke A D, J Chem Phys, 98(1993)5648.
    20.  Hohenberg P, Kohn W, Phys Rev B, 136(1964)864-871; doi10.1103/PhysRev.136.B864.   
    21.  Karakas A, Migalska-Zalas A, El Kouari Y, Gozutok A, Karakaya M, Touhtouh S, Optical Materials, 36(2014)22-26.
    22.  Kenawi I M, Kamel A H, Hilal R H, J Mol Struct (Theochem), 851(2008)46-53.
    23.  Srivastava A, Tandon P, Jain S, Asthana B P, Spectochim Acta A, 84(2011)144-155.
    24.  Scrocco E, Tomasi J, Adv Quantum Chem, 11(1978)115-193.
    25.  Munoz-Caro C, Niño A, Sement M L, Leal J M, Ibeas S, J Org Chem, 65(2000)405-410.
    26.  Politzer P, Laurence P R, Jayasuriya K, Env Health Perspect, 61(1985)191-202.
    27.  Gao J, J Chem Phys, 98(1993)1975.
    28.  Cieplak P, J Comp Chem, 12(1991)1232; doi.org/10.1002/jcc.540121010
    29.  Premkumar S, Jawahar A, Mathavan T, Kumara Dhas M, Sathe V G, Franklin Benial A M, Spectrochim Acta, A129 (2014)74-83.
    30.  Arjunan V, Balamourougane P S, Thillai Govindaraja S, Mohan S, J Mol Struct, 1018(2012)156-170.
    31.  Glendering E D, Reed A E, Carpenter J E, Weinhold F. (1998), NBO Version 3.1, University of Wisconsin, Madison.
    32.  James C, Pettit G R, Nielsen O F, Jayakumar V S, Joe I H, Spectrochim Acta, 70A(2008)1208-1216.
    33.  Weinhold F, Landis C R, Chem Educ Res Pract Eur, 2(2001)91-104.
    34.  Reed A E, Curtiss L A, Weinhold F,  Chem Rev, 88(1988)899-926.
    35.  Dunning T H, J Chem Phys, 90(1989)1007; doi.org/10.1063/1.456153.

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                       Vol. 27 No 1, 2018, 35-48


Synthesis, vibrational spectral and optical absorption studies on the

Dichlorobis (DL-alanine)zinc(II) complex

 

S Chitrambalam, and I Hubert Joe

Centre for Molecular and Biophysics Research, Mar Ivanios College, Thiruvananthapuram-695 015, India

___________________________________________________________________________________________________________________________________

An organometallic single crystal of Dichlorobis (DL-alanine)zinc(II) complex (DLAZC) was grown by slow evaporation solution growth method. The structural geometry parameters, vibrational wavenumbers and second-order hyperpolarizability of DLAZC complex were calculated using density functional theory method. The absorption spectra of the compound were calculated using time-dependent density functional theory based on polarizable continuum model. The laser induced damage threshold study is also carried out. Third-order nonlinear optical properties of DLAZC were studied at different concentrations and intensities using open- and closed aperture Z-scan technique with 5 ns Nd:YAG laser at 532 nm. © Anita Publications. All rights reserved.

Keywords: Crystal growth. UV-Visible. Laser damage threshold. Z-scan, Optical limiting, DFT

References
    1.    Prasad N P, Williams D J, Introduction to Nonlinear Optical Effects in Molecules and Polymers, (Wiley: New York), 1991.
    2.    Cariati E, Pizzotti M, Roberto D, Tessore F, Ugo R, Coord Chem Rev, 250(2006)1210-1233.
    3.    Bellier Q,  Makarov N S, Bouit P A, Rigaut S,  Kamada K, Feneyrou P, Berginc G, Maury O, Perry J W,  Andraud C, Phys Chem Chem Phys,

           14(2012)15299-15307.
    4.    Ma X, Lin C, Zhang H, Lin Y, Hu S, Sheng T, Wu X, Dalton Trans, 42(2013)12452-12459.
    5.    Kulyk B, Guichaoua D, Ayadi A, El-Ghayoury A, Sahraoui B, Org Electron, 36(2016)1-6.
    6.    Iliopoulos K, Guezguez I, Kerasidou A P, El-Ghayoury A, Branzea D, Nita G, Avarvari N, Belmabrouk H, Couris S, Sahraoui B, Dyes and Pigments,

           101(2014)229-233.
    7.    Xu H, Song Y, Mi L, Hou H, Tang M, Sang Y, Fan Y, Pan Y, Dalton Trans, 6(2006)838-845.
    8.    Chen Y, Hanack M, Araki Y, Ito O, Chem Soc Rev, 34(2005)517-529.
    9.    Bright K C, Freeda T H, Phys B: Condens Matter, 405(2010)3857-3861.
    10.  Balakrishnan T, Ramamurthi K, Mater Lett, 62(2008)65-68.
    11.  Chitrambalam S, Manimaran D, Joe I H, Rastogi V K, Hassan I U, Opt Mater. 75(2018)285-296.
    12.  Nandhini M S, Krishnakumar R V, Natarajan S, Acta Cryst. E58(2002)m127- m129; doi.org/10.1107/S1600536802003148
    13.  Guezguez I, Ayadi A, Ordon K, Iliopoulos K, Branzea D G, Zalas A M, Janusik M M, Ghayoury A E,  Sahraoui B, J Phys Chem C, 118(2014)7545-7553.
    14.  Wang Y, Zhang Y, Zhu D, Ma K, Ni H, Tang G, Spectrochim Acta, A147(2015)31-42.
    15.  Baccouche A, Peigne´ B, Ibersiene F, Hammoutène D,  Boutarfaïa A, Boucekkine A, Feuvrie C, Maury O,  Ledoux I, Bozec H L, J Phys Chem A,         

           114(2010)5429-5438.
    16.  Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, M. A. Robb M A, J. R. Cheeseman, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H,

           Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G,  Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M,  

           Nakajima T, Honda Y, Kitao O,  Nakai H, Vreven T, Montgomery J A (Jr), Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov 

           V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J

           B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K,

           Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O,  Foresman J B, Ortiz J V, Cioslowski J, Fox D J, Gaussian 09,

           Revision A.02 ,Gaussian, Inc.,Wallingford CT, 2009.
    17.  Dennington II R, Keith T, Eppinnett K, Hovell W L, Gilliland R, GaussView, Version 3.0, Semichem, (Inc., Shawnee Mission, KS), 2000.
    18.  Lee C, Yang W, Parr R G, Phys Rev B, 37(1988)785-789.   
    19.  Jamroz M H, Spectrochim Acta,  A114(2013)220-230.
    20.  Miertus S, Scrocc E, Tomasi J, Chem Phys, 55(1981)117-129.
    21.  Alagar M, Krishnakumar R V, Nandhini M S, Natarajan S,  Acta Crystallogr E, 57(2001)o855-o857.; doi./10.1107/S1600536801013149
    22.  Silverstien R M, Webster F X, Spectrometric Identification of organic compounds, Sixth edn, (John Wiley & Sons Inc., New York), 2003.
    23.  Smith B, Infrared spectral Interpretation, a systematic approach, (CRC Press, Washington, DC), 1999.
    24.  Nakamoto K, Infrared and Raman spectra of Inorganic and coordination compounds Handbook of vibrational spectroscopy, (John Wiley & Sons, Ltd., New

           York), 2006.
    25.  Miertus S, Tomasi J, Chem Phys. 65(1982)239-245.
    26.  Elleuch N, Ahmed A B, Feki H, Abid Y, Minto C, Spectrochim Acta, 121A(2014)129-138.
    27.  Xenides D, Maroulis G, Chem Phys Lett, 319(2000)618-624.
    28.  Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W, IEEE J Quantum Electron, 26(1990)760-769.
    29.  Sun X, Wang Y, Ren Q, Zhang F, Gao Y, Yang H, Feng L, Wang X, Xu D, Opt Mater, 29(2007)1305-1309.
    30.  He G S, Weder C, Smith P, Prasad P N, IEEE J Quantum Electron, 34(1998)2279-2285.
    31.  Ganeev R, Ryasnyansky A, Kodirov M, Usmanov T, Opt Commun, 185(2000)473-478.
    32.  Irimpan L, Nampoori V P N, Radhakrishnan P, Krishnan B,  Deepthy A, J Appl Phys, 103(2008)033105-033107.

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                       Vol. 27 No 1, 2018, 49-56


Growth, structural, thermal and optical properties of a third-order nonlinear optical organic crystal:

Barbituric Acid Dihydrate


P Prabu, P Umarani, and C Ramachandra Raja

Department of Physics,

Government Arts College (Autonomous), Kumbakonam- 612 001, India.

___________________________________________________________________________________________________________________________________

The Barbituric Acid Dihydrate (BADH) (C4H4N2O3.2(H2O)) single crystal was grown from aqueous solution by applying slow solvent evaporation technique at room temperature. The unit cell parameters and crystal structure were confirmed by single crystal and powder X-ray diffraction analyses and BADH crystal crystallizes in orthorhombic system with centrosymmetric space group Pnma. The 13C NMR spectrum was recorded to reveal the carbon environment. The vibrational behavior of the compound was identified by the Fourier transform infrared (FT-IR) spectroscopy. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were also carried out to determine the thermal stability of the grown crystal. This crystal was found to be stable up to 180°C. The UV–Vis absorption spectrum reveals that the lower cut-off wavelength is 270 nm. The Z-scan technique was employed to calculate the nonlinear refractive index (n2), nonlinear absorption coefficient (b) and the third-order nonlinear optical susceptibility c(3). © Anita Publications. All rights reserved..

Keywords: Barbituric Acid Dihydrate, X-ray diffraction, Z-scan technique, Third-order nonlinear optical susceptibility

References
    1.    Chemla D S, Zyss J (eds), Nonlinear Optical Properties of Organic Molecules and Crystals, (Academic Press, New York), 1987.
    2.    Dalton L R, Sullivan P A, Olbricht B C, Bale D H, Takayesu J, Hammond S, Rommel H,  Robinson B H, Tutorials in Complex Photonic Media, SPIE,

           Bellingham, WA, (2007).
    3.    Munn R W, Ironside C N, Principles and Applications of Nonlinear Optical Materials, (Chapman & Hall, London), 1993.
    4.    Thakur M, Xu J, Bhowmilk A, Zhou L, Appl Phys Lett, 74(1999)635-637.
    5.    Kaino T, Cai B, Takayama K, Adv Funct Mater, 12(2002)599-603.
    6.    Träger F (ed), Springer Handbook of Lasers and Optics, Springer, (2007), Part A 5.4, 8
    7.    Gryl M,  Kozieł M, Stadnicka K, Matulkova I, Nemec I, Tesarova N, Nemec P, Cryst Eng Comm,15(2013)3275-3278.
    8.    Kondo K, Ochiai S, Takemoto K, Kai Y, Kasai N, Yoshida K, Chem Phys Lett, 188(1992)282-286.
    9.    Song K, Wang C H, Cho B R, Je J T, J Phys Chem, 99(1995)6808-6811.
    10.  Garin J, Orduna J, Ruperez J I, Alcala R, Villacampa B, Sanchez C, Martin N, Segura J L, Gonzalez M, Tetrahedron Lett, 39(1998)3577-3580.
    11.   Feng J.-D, Yan L.-K, Su Z.-M, Kan Yu-He, Lan Y.-H, Liao Y, Zhu Y-L, Chin J Chem, 24(2006)119-123; 
doi.org/10.1002/cjoc.200690005
    12.   Ivanova B B, Spiteller M, Crystal Growth & Design, 10(2010)2470-2474.
    13.   Kondo K, Ochiai S, Takemoto K, Kai Y, Kasai N, Chem Phys Lett, 188(1992)3-4.
    14.   Jeffrey G A, Ghose S, Warwicker J O, Acta Cryst, 14(1961)881-887.
    15.   de Oliveira LFC, Santos P S, Rubim J C, J Raman Spectrosc, 22(1991)485-4488.
    16.   El-Megharbel S M,  Refat M S, J Adv in Chem, 5(2013)633-640.
    17.   Sebastian S, Varghese H T, Mary Y S, Panicker C Y, Oriental J Chem,  26(2010)1139-1142
    18.   SDBS Compounds and Spectral Search. http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi (accessed 26 November 2017)
    19.   Rao CNR, Ultraviolet and Visible Spectroscopy, Chemical Applications, (Plenum Press), 1975.
    20.   Sabari Girisun TCS, Dhanuskodi S, Cryst Res Technol, 44(2009)1297-1302.
    21.   Pritchett T, Models for Saturable and Reverse Saturable Absorption in Materials for Optical Limiting, Army Research Laboratory, Delphi, MD 20783-1197,

            ARL-TR-2567 October 2002.
    22.   Zang Z, Appl Opt, 52(2013)5701-5706.
    23.   Zang Z-G, Zhang Y-J, J  Mod Opt, 59(2012)161-165.
    24.   Thirumalaiselvam B, Kanagadurai R, Jayaraman D, Natarajan V, Int J Chem Tech Res, 8(2015)363-369.
    25.   Kailasam Sivakumar P K, Kumar S, Kumar R M, Kanagadurai R, Sagadevan S, Mat Res, 19(2016)937-941.
    26.   Kumar M S, Sudhahar S, Pandi P, Bhagavannarayana G, Kumar R M, Opt Mater, 36(2014)988-995.
    27.   Li FQ, Zong N, Zhang FF, Yang J, Yang F, Peng Q.-J,  Cui D.-F, Zhang J.-Y, Wang X.-Y, Chen C.-T, Xu Z.-Y, Appl Phys B, 108(2012)301-305.

            No Ref of 2017

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                       Vol. 27 No 1, 2018, 57-86


Second and third order nonlinear optical single crystalline materials: A Review


A Alexandara,b and P Rameshkumarb
 aDepartment of Mathematics, Anugraha Institute of Social Sciences, Dindigul-624 003, Tamilnadu, India
bPG and Research Department of Physics, Periyar E.V.R. College (Autonomous), Tiruchirappalli-620 023, Tamilnadu, India

___________________________________________________________________________________________________________________________________

Organic and inorganic nonlinear optical (NLO) materials play a key role in photonics related fields including optical data storage, information processing, sensor applications, optical data storage etc. Some organic compounds exhibit large NLO response, in many cases, orders of magnitude larger than widely known inorganic materials. The importance of amino acid based organic materials for NLO application is due to the fact that all the amino acids, except glycine contain chiral carbon atom and crystallize in non-centrosymmetric structure. Another added advantage of amino acid based NLO active material is the presence of proton donor carboxyl group (COO-) and acceptor amino group (NH3+) which make them an ideal candidate for NLO application and transparent in the UV-Visible region.  This review paper presents theoretical and experimental results of some  second and third order nonlinear optical single crystalline materials. © Anita Publications. All rights reserved.

References
    1.    Vijayan N, Bhagavannarayana G, Maurya K K, Sharma S N, Gopalakrishnan R, Jayabharathi J, Ramasamy P,  Optik, 123(2012)604-608; doi.org/10.1016

           /j.ijleo.2011.06.002
    2.    Sharma R P, Sharma R, Bala R, Venugopalan P,  J  Coord  Chem, 58 (2005)899-908; doi.org/10.1080/00958970500110834.
    3.    Dhas SAM Britto, Natarajan S, Cryst Res Technol, 42(2007)471-476; http://dx.doi.org/10.1002/crat.200610850
    4.    Li Z, Wu B, Su G, HuangnG, Appl Phys Lett, 70(1997)562-564; doi.org/10.1063/1.118208
    5.    Marudhu G, Krishnan S, Thilak T, Samuel P, Vinitha G, Pasupathi G, J Nonlinear Opt Phys Mater, 22(2013)1350043; doi.org/10.1142/S0218863513500434.
    6.    Laudise R A, Crystal growth and characterization, (North-Holland Publishing Co, Amsterdam), 1975.
    7.    Brice J C, Crystal Growth Process, (John Wiley and Sons, New York), 1986.
.   8.    Nalwa H S, Miyata S, Nonlinear Optics of Organic Molecules and Polymers, (CRC Press Inc., New York),1996.
    9.    Pichan K,  Muthu S, Perumalsamy R, J Cryst Growth, 473(2017)39-54.
    10.  Vijayalakshmi A. Vidyavathy B, Vinitha G, J Cryst Growth, 448(2016)82-88.
    11.  Huang C B, Mao M S, Wu H X, Wang Z Y, Ni Y B, J Cryst. Growth, 483(2018)318-322.
    12.  Liu S H, Chen C C, C.W. Lan C W, J Cryst Growth, 362(2013)106-110.
    13.  Silambarasan A, Rajesh P,  Ramasamy P, J Cryst Growth, 468(2017)38-42
    14.  Kalaiyarasi S, Zahid M D, Devi S R, Kumar R M, J Cryst Growth, 460(2017)105-111.
    15.  Cao L, Teng B, Zhong D, Hao L, Sun Q, J Cryst Growth, 451(2016)188-193.
    16.  Theras E M, Kalaivani D,  Jayaraman D, Joseph V,  J Cryst Growth, 427(2015)29-35.
    17.  Jauhar ROMU, Vinitha G,  Murugakoothan P, J Cryst Growth, 455(2016)90-93.
    18.  He Zhiyu, Zhao Beijun, Zhu Shifu, Chen Baojun, Feng Bo, J Cryst Growth,  481(2018)29-34.
    19.  Devi S R, Kalaiyarasi S, Zahid IMD, Kumar R M, J Cryst Growth, 454(2016)139-146.
    20.  Yuan Dongsheng, Li Yang, Shu Jun, Gao Zeliang, Tao Xutang, J Cryst Growth, 433(2016)59-62.
    21.  Menezes Anthoni Praveen, Jayarama A, Ng Seik Weng, J Cryst Growth, 402(2014)130-137.
    22.  Kajamuhideen M S, Sethuraman K, Ramamurthi K, Ramasamy P, J Cryst Growth, 483(2018)16-25
    23.  Babu D R, Arul H, Vizhi R E, J Cryst Growth, 452(2016)220-225.
    24.  Bincy I P, Gopalakrishnan R, J Cryst Growth,  402( 2014)22-31.
    25.  Li Y, Zhang J, Zhang G, Wu L, Fu P, Wu Y,  J Cryst Growth, 327(2011)127-132.
    26.  Thayanithi V, Kumar P P, Mechanics, Materials Science & Engineering Journal, April 2017;  Open Access, 2017, 9, <10.2412/mmse.13.44.508>. 

           <hal-01503643>
    27.  Shkir M, Vijayan N, Nasir M, Wahab M A, Bhagavannarayana G, Optik, 124(2013)985-989.
    28.  Guo Li, Jin Weizhao, Chen Zekun, Liu Jinghe, Mahadevan C K, J Cryst Growth,  480(2017)154-163.
    29.  Pamplin B R Crystal Growth, (Pergman Press, London), 1980.
    30.  Chernov A A, Modern Crystallography III-Crystal Growth, (Springer-Verlag, Solid State Series, Berlin), 1984.
    31.  Faktor M M, Garrett I, Growth of Crystals from Vapour, (Chapmann and Hall, London), 1974.
    32.  Brice J C, The growth of crystals from liquids, (North Holland Publishing Company, Amsterdam),1973.
    33.  Henisch H K, Crystals in gels and Liesegang rings, (Cambridge Univ Press. USA), 1988.
    34.  Buckley H E, Crystal Growth, (John Wiley and Sons, New York), 1951.
    35.  Elwell D, Scheel H J, Crystal Growth for High Temperature Solutions, (Academic Press Inc., London), 1975.
    36.  Pamplin B R, Crystal Growth, (Pergamon Press, Oxford), 1979.
    37.  Brice J C,  The growth of crystals from liquids, (Wiley, New York), 1972.
    38.  Bharthasarathi T, Shankar V Siva, Jayavel R, Murugakoothan P,  J Cryst Growth, 311(2009)1147-1151; doi.org/ 10.1016/j.jcrysgro.2008.10.114.
    39.  Kumar S M Ravi, Melikechi N, Selvakumar S, Sagayaraj P, J Cryst Growth, 311(2009)337-341.
    40.  Rajesh P, Ramasamy P, Mahadevan C K, J Cryst Growth, 311(2009)1156-1160. doi.org/10.1016/j.jcrysgro.2008.11.091
    41.  Czarnecki P, Wasicki J, Pajak Z, Goc R, Mahaszyfiska H, Habryto S, J Mol Struct, 404(1997)175-180.
    42.  Dhanuskodi S, Manivannan S, Kirschbaum K, Spectrochim Acta, A 64(2006)504-511.
    43.  Babu R R, Vijayan N, Gunasekaran M, Gopalakrishnan R, Ramasamy P, J Cryst Growth,  265(2004)290-295.
    44.  Mohamed M Gulam, Rajarajan K, Mani G, Vimalan M, Prabha K, Madhavan J, Sagayaraj P, J Cryst Growth, 300(2007)409- 414; https://doi.org/10.1016

           /j.jcrysgro.2006.11.341
    45.  Vijayan N,  Babu R R, Gunasekaran M, Gopalakrishnan K, Kumaresan R, Ramasamy P, Lan C W, J Cryst Growth,  249(2003)309-315; doi.org/10.1016

           /S0022-0248(02)01949-8
    46.  Nagaraja H S, Upadhyaya V, Rao P Mohan, Aithal P Sreeramana, Bhat A P,  J Cryst Growth, 193(1998)674-678; doi.org/10.1016/S0022-0248(98)00483-7
    47.  Perumal C K Lakshmana, Arulchakkaravarthi A, Rajesh N P, Raghavan P Santhana, Huang Y C, Ichimura M, Ramasamy P,  J Cryst Growth, 

           240(2002)212-217; doi.org/10.1016/S0022-0248(02)00857-6
    48.  Rosker M J, Tang C L, J Opt Soc Am B,  2(1985)691-696; doi.org/10.1364/ JOSAB.2.000691
    49.  Rai R N, Ramasamy P,  Lan C W, J Cryst Growth, 235(2002)499-504.
    50.  Lin Y Y, Rajesh N P, Raghavan P Santhana, Ramasamy P, Huang Y C, Mater Lett, 56(2002)1074-1077; doi.org/10.1016/S0022-0248(01) 01796-1
    51.  Shen Jun, Zheng Jimin, Che Yunxia, Xi Bin,  J Cryst Growth,  257(2003)136-140; doi.org/ 10.1016/S0022-0248(03)01408-8.
    52.  Boomadevi S, Mittal H P,  Dhanasekaran R, J Cryst Growth, 261(2004)55-62; doi.org/10.1016/ j.jcrysgro.2003.09.005
    53.  Dhanuskodi S, Manivannan S, J Cryst Growth, 262(2004)395-398; doi.org/10.1016/j.jcrysgro.2003.10.088
    54.  Unver H, Karakas A, Elmali A,  Durlu T N,  J Mol Struct, 737(2005)131-137; doi.org/ 10.1016/j.molstruc.2004.10.016
    55.  Manivannan S, Dhanuskodi, J Cryst Growth, 262(2004)473-478; doi.org/10.1016/j.jcrysgro.2003.10.029
    56.  Shaokang Gao, Chen Weijun, Wang Guimei, Chen Jianzhong, J Cryst Growth, 297(2006)361-365; doi.org/10.1016/j.jcrysgro.2006.09.047
    57.  Patil P S, Dharmaprakash S M, Fun H K, Karthikeyan M S, J Cryst Growth, 297(2006)111-116; doi.org/10.1016/j.jcrysgro.2006.09.017
    58.  Padmaja L, Vijayakumar T, Joe I H, Nair CPR,  Jayakumar V S,  J Raman Spectrosc, 37(2006) 1427-1441; doi.org/10.1002/jrs.1575
    59.  Jagannathan K, Kauulainathan S, Gnanasekaran T, Vijayan N, Bhagavannarayana G, Cryst Res Technol, 42(2007) 483-487.
    60.  Mythili P, Kanagasekaran T, Gopalakrishnan R, Cryst Res Technol, 42(2007)791-799; doi.org/10. 1002/crat.200710907.
    61.  Mohamed M Gulam, Rajarajan K, Mani G, Vimalan M, Prabha K, Madhavan J,  Sagayaraj P, J Cryst Growth,  300(2007)409- 414; https://doi.org/10.1016

           /j.jcrysgro.2006.11.341
    62.  Ravindra H J, Kiran A John, Nooji Satheesha Rai, Dharmaprakash S M, Chandrasekharan K, Kalluraya Balakrishna,  Rotermund Fabian, J Cryst Growth,

           310(2008)2543-2549.
    63.  Babu G A, Ramasamy R, J Cryst Growth, 311(2009)1185-1189; doi.org/10.1016/j.jcrysgro.2008.11.101
    64.  Sun Z H, Zhang G H, Wang X Q, Cheng X F, Liu X J, Zhu L Y, Fan H L, Yu G, Xu D, J Cryst Growth, 310(2008)2842-2847; doi.org/10.1016

           /j.jcrysgro.2008.02.026
    65.  Madhurambal G, Ramasamy P, Anbu Srinivasan P, Suganthi M, Vasudevan G, Mojumdar S C, J Therm Anal Calorimetry, 94(2008)45-51; doi.org/10.1007

           /s10973-008-9186-
    66.  Shankar V S, Siddheswaran R, Sankar R, Jayavel R, Murugakoothan P, Mater Lett, 63(2009)363-365; doi.org/10.1016/j.matlet.2008.10.049
    67.  Raja C R, Joseph A A, Mater Lett, 63(2009)2507- 2509; doi.org/10.1016/ j.matlet.2009.08.046
    68.  Sun Z H, Zhang G H, Wang X Q, Yu G, Zhu LY, Fan H L, Xu D, J Cryst  Growth, 311(2009)3455-3460.;doi.org/10.1016/j.jcrysgro.2009.04.008
    69.  Devi T U, Lawrence N, Babu R R, Selvanayagam S, Stoeckli-Evans H, Ramamurthi K, J Cryst Growth, 311(2009)3485-3490; doi.org/10.1016

            /j.jcrysgro.2009.04.022
    70.   Vijay R J, Melikechi N, Kumar T R, Jesudurai J G M, Sagayaraj P, J Cryst Growth, 312(2010)420-425.
    71.   Devi T U, Lawrence N, Babu R R, Ramamurthi K, J Cryst Growth, 310(2008)116-123.
    72.   Devi T U, Lawrence N, Babu R R, Ramamurthi K, Bhagavannarayana G, Journal of Minerals & Materials Characterization & Engineering,

            8(2009)393-403.
    73.   Natarajan S, Umamaheshwaran M, Kalyana S J, Suresh J, Martin Britto Dhas S A, Spectrochim Acta, A77(2010)160-163.
    74.   Dhanaraj P V, Rajesh N P, Physica B, 406(2011)12-18; doi.org/10.1016/j.physb.2010.09.041.
    75.   Gupta M K, Sinha N, Kumar B, Physica B, 406(2011)63-67.
    76.   Amalanathan M, Hubert I, Rastogi V K, J Mol Struct, 985(2011)48-56.
    77.   Kurtz S K, IEEE J. Quantum Electron. 4(1968)578-584.
    78.   Sheik-Bahae M, David J H, IEEE J Quantum Electron, 26(1990)760-769.
    79.   Monaco S B, Davis L E, Velso S P, Wang F T, Eimerl D, Zalkin A, J Cryst Growth, 85(1987)252- 257.
    80.   John Kiran A, Mithun A, Shivarama Holla B, Shashikala H D, Umesh G, Chandrasekharan K, Opt Commun, 269 (2007)235-240.
    81.    Lee J S, Nguyen C, IEEE Microwave and Wireless Components Letters, 11(2001)208-210.
    82.   Alexandar A, Surendran P, Priya S S, Lakshmanan A, Rameshkumar P, Journal of Nonlinear Optical Physics & Materials, 25(2016)1650052;

            doi.org/10.1142/S0218863516500521.
    83.   Alexandar A, Lakshmanan S, Priya S S, Surendran P, Journal of Nonlinear Optical Physics & Materials, 26(2017) 1750004;doi.org/10.1142

            /S0218863517500047
    84.   Alexandar A, Priya S S, Lakshmanan A, Surendran P, Rameshkumar P, International Journal of Modern Physics B, 31(2017)1750174. doi.org/10.1142

            /S0217979217501740.
    85.   Alexandar A, Surendran P, Priya S S, Lakshmanan A, Rameshkumar P,  Journal of Nonlinear Optical Physics & Materials, 25(2016); doi.org/10.1142

            /S0218863516500375.
    87.   Chandran S, Paulraj R, Ramasamy P, J Cryst Growth, 468(2017)68-72.
    87.   Priya S S, Alexandar A, Surendran P, Lakshmanan A, Rameshkumar P, Opt Mater, 66(2017)434-441.doi.org/10.1016/j.optmat.2017.02.041.
    88.   Alexandar A, Rameshkumar P, International Journal of Scientific & Engineering Research, 8(2017)41-45.

___________________________________________________________________________________________________________________________________

© ANITA PUBLICATIONS

All rights reserved