An International Research Journal

Vol 27 Nos 7&8


SSN : 0971 - 3093

Vol 27, Nos 7 & 8, July-August, 2018

Asian Journal of Physics                                                                                                         Vol. 27 Nos 7 & 8, (2018), 387-394

Raman spectroscopy of CVD-grown monolayer and bilayer graphenes

Yu-Chen Leng1,2, Miao-Ling Lin1,2 and Ping-Heng Tan1,2,*

1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2CAS Center of Excellence in Topological Quantum Computation, and College of Materials Science and Opto-Electronic Technology,
University of Chinese Academy of Sciences, Beijing 100049, China


Monolayer graphene (1LG) and bilayer graphene (2LG) grown by chemical vapor deposition (CVD) are promising materials for electronic and optoelectronic devices. As a non-destructive characterization technique, Raman spectroscopy is widely used to detect the properties of graphene. Here, we review the Raman spectra of CVD-grown 1LG and 2LG. The Raman spectra of CVD-grown 1LG (CVD-1LG) and exfoliated 1LG (ex-1LG) were compared in the D and G spectral regions. The CVD-2LG tends to stack with a relative twist angle, which is usually denoted as t(1+1)LG. The Raman intensity of the G mode (|(G)) of the t(1+1)LG can be greatly enhanced under specific excitation energies, which is closely related with the twist angle of t(1+1)LG. The twist angle can be determined by the peak positions of R and R' modes. The CVD-1LG flakes can be distinguished by comparing its |(G) with that of ex-1LG whereas CVD-2LG can be identified by the optical contrast. © Anita Publications. All rights reserved.

Keywords: CVD-grown graphene, twist bilayer graphene, Raman spectra.


  1.   Geim A K, Novoselov K S, Nat Mater, 6(2007)183-191.

  2.   Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A, Science 306(2004)666-669.

  3.   Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J.-H, Kim P, Choi J.-Y, Hong B H, Nature, 457 (2009)706-710.

  4.   Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J, Nano Lett, 9(2009)3087-3087.

  5.   Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L,  Ruoff R S, Science, 324(2009)1312-1314.

  6.   Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W.-J, J Am Chem Soc, 134(2012)3627-3630.

  7.   Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel E L, Kittrell C, Tour J M, ACS Nano, 6(2012)9110-9117.

  8.   Gan L, Luo Z, ACS Nano, 7(2013)9480-9448.

  9.   Li X, Magnuson C W, Venugopal A, Tromp R M, Hannon J B, Vogel E M, Colombo L, Ruoff R S, J Am Chem Soc, 133(2011)2816-2819.

10.   Hao Y.-F, M. S. Bharathi, Wang L, Liu Y.-Y, Chen H, Nie S, Wang X.-H, Harry Chou, Tan C, Babak Fallahazad, H. Ramanarayan, Carl W. Magnuson,

        Emanuel Tutuc, Boris I. Yakobson, Kevin F. McCarty, Zhang Y.-W, Philip Kim, James Hone, Luigi Colombo, Rodney S. Ruoff; Science, 342(2013)720-723;

11.   Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K, Nat

        Nanotechnol, 11(2016)930-935.

12.   Tsen A W, Brown L, Levendorf M P, Ghahari F, Huang P Y,  Havener R W, Ruiz-Vargas C S, Muller D A, Kim P, Park J, Science,  336(2012)1143-1146.

13.   Havener R W, Zhuang H, Brown L, Hennig R G, Park J, Nano Lett, 12(2012)3162-3167.

14.   Wu J.-B, Wang H, X.-L Li X.-L, Peng H.-L, Tan P.-H, Carbon, 225(2016)225-231.

15.   Miao-Ling L, Tao C, Wei L, Qing-Hai T, Pei Z, Hong-Tao W, Yang X, Ping-Heng T, J Raman Spectrosc, 49 (2018)46-53.

16.   Ferrari A C, Basko D M, Nat Nanotech, 8(2013)235-246.

17.   Wu J.-B, Lin M.-L, Cong X, Liu H.-N, Tan P.-H, Chem Soc Rev, 47(2018)1822-1873.

18.   Zhao W.-J, Tan P.-H, Liu J, Ferrari A C, J Am Chem Soc, 133(2011)5941-5946.

19.   Zabel J, Nair R R, Ott A, Georgiou T, Geim A K, Novoselov K S, Casiraghi C, Nano Lett, 12(2012)617-621.

20.   Calizo I, Balandin A, Bao W, Miao F, Lau C, Nano Lett, 7(2007)2645-2649.

21.   Thomsen C, Reich S, Phys Rev Lett, 85(2000) 5214;

22.   Cancado L G, da Silva M G, Ferreira E H M, Hof F, Kampioti K, Huang K, Penicaud A, Achete C A, Capaz R B, Jorio A, 2D Mater, 4(2017) 025039;

23.   Tan P.-H, Han W.-P, Zhao W.-J, Wu Z.-H, Chang K, Wang H, Wang Y.-F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, Ferrari A C, Nat Mater,


24.   Wu J.-B,  Zhang X, Ijias M, Han W.-P, Qiao X.-F, Li X.-L, Jiang D.-S, Ferrari A C, Tan P H, Nat Commun,  5(2014)5309.

25.   Wu J.-B, Hu Z.-X, Zhang X, Han W.-P, Lu Y, Shi W, Qiao X.-F, Ijiäs M, Milana S, Ji W, Ferrari A C, Tan P.-H, ACS Nano


26.   Kim K, Coh S, Tan L Z, Regan W, Yuk J M, Chatterjee E, Crommie M F, Cohen M L, Louie S G, Zettl A, Phys Rev Lett, 108(2012) 246103;


27.   Jorio A, Cançado L G, Solid State Commun, 175-176 (2013)3-12;

28.   Carozo V, Almeida C M, Ferreira E H M, Cancado L G, Achete C A,  Jorio A, Nano Lett, 11(2011)4527-4534.

29.   Carozo V, Almeida C M, Fragneaud B, Bede P M, Moutinho M V O, Ribeiro-Soares J, Andrade N F, Filho A G Souza, Matos M J S, Wang B, Terrones M,

        Capaz R B, Jorio A, Achete C A, Cancado L G, Phys Rev B, 88(2013). 085401;

30.   Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim, A K, Proc Natl Acad Sci, 02(2005)10451-10453 .

31.   Zhang X, Li Q.-Q, Han W.-P, Lu Y, Shi W, Wu J.-B, Mikhaylushkin A S, Tan P.-H, Nanoscale, 6(2014)7519-7525.

32.   Peter Y,  Cardona M, Fundamentals of semiconductors: Physics and materials properties, (Springer Science & Business Media), 2010.

33.   Ferrari A C, Solid State Commun, 143(2007)47-57.

34.   Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, Sood A K, Nat

        Nanotech, 3(2008)210-215.

35.   Das A, Chakraborty B, Piscanec S, Pisana S, Sood A K, Ferrari A C, Phys Rev B, 79(2009)155417; /  /PhysRevB.79.155417

36.   Piscanec S, Lazzeri M, Mauri F, Ferrari A C, Robertson J, Phys Rev Lett, 93(2004) 185503;

37.   Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C, Mauri F, Nat Mater, 6(2007)98-201.

38.   Yan K, Peng H, Zhou Y, Li H, Liu Z, Nano Lett, 11(2011)1106-1110.

39.   Rakhmanov A L, Rozhkov A V, Sboychakov A O, Nori F, Phys Rev Lett, 109(2012) 206801;

40.   Lui C H, Z, Chen Z, Klimov P V, Brus L E, Heinz T F, Nano Lett, 11(2011)164-169.

41.   Ni Z, Wang Y, Yu T, You Y, Shen Z, Phys Rev B, 77(2008) 235403;

42.   Moon P, Koshino M, Phys Rev B, 90(2014)155406;

43.   Yeh C.-H, Lin Y.-C, Chen Y.-C, Lu C.-C, Liu Z, Suenaga K, and P.-W Chiu P.-W, ACS Nano, 8(2014)6962–6969.

44.   de Laissardiere G Trambly, Mayou D, Magaud L, Nano Lett, 10(2010)804-808.

45.   Sato K, Saito R, Cong C, Yu T, Dresselhaus M S, Phys Rev B, 86(2012)125414; / Phys RevB .86 25414

46.   Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D,  Novoselov K S, Roth S, Geim A K, Phys Rev Lett,


47.   Latil S, Henrard L, Phys Rev Lett, 97(2006) 036803;

48.   Jorio A, Kasperczyk M, Clark N, Neu E, Maletinsky P, Vijayaraghavan A, Novotny L, Nano Lett, 14(2014)5687-5692.


Asian Journal of Physics                                                                                                         Vol. 27 Nos 7 & 8, (2018), 397-402

Application of Particle Finder™ for fast particle statistics and chemical analysis

Enping Hu1, Thibault Brule2, Catalina David3 and Jing Shen4

1HORIBA (China) Trading Co.,Ltd, Shanghai, China, 200335

2HORIBA France SAS, Palaiseau, France, 91120

3HORIBA Scientific, 231 rue de Lille, Villeneuve d’Ascq, France, 59650

4HORIBA (China) Trading Co.,Ltd Beijing Branch, Beijing, China, 100080


Particle Finder™, together with HORIBA Raman spectrometers, enables reliable and fast characterization of numerous particles both in counting/morphology statistics and composition analysis. It has been widely used in various applications such as microplastics pollutants, pharmaceuticals, trace forensic evidence, geological rock/mineral particles and filtered particulate from atmospheric pollutants. The functionality of Particle Finder™ is here demonstrated for microplastics analysis, providing statistics on particle size, morphology and chemical composition. Other application examples in pharmaceutical analysis are also provided to prove the efficiency of fast particle characterization. © Anita Publications. All rights reserved.

Keywords: Micro Plastics, Pharmaceutics, Raman, Particle Finder, Classification, Particle counting, Particle identification


  1.   Technical Notes, HORIBA public application Note, SO-TN05

  2.   Oßmann Barbara E, Sarau George, Schmitt Sebastian W, Holtmannspötter Heinrich, Christiansen Silke H, Dicke Wilhelm, Anal Bioanal Chem,


  3.   Collard F, Bernard Gilbert B, Eppe G,  Parmentier E, Das K, Arch Environ Contam Toxicol, 69(2015)331-339.

  4.   Karami A, Golieskardi A, Ho Y B, Larat V, Salamatinia B, Scientific Reports 7, Article number: 5473 (2017)

  5.   Frere L, I. Paul-Pont I, Rinnert E, Petton S, Jaffre J, Bihannic I, Soudant P, Lambert C, Huvet A, Environmental   Pollution, 225(2017)211-222

  6.   Lots F A E, Behrens P, Vijver M G, Horton A A, Bosker T, Marine Pollution Bulletin,123 (2017)219-226.

  7.   Horton A A, Svendsen C, Williams R J, Spurgeon D J, Lahive E, Marine Pollution Bulletin, 114(2017)218-226

  8.   Ivleva N P, Wiesheu A C, Niessner R, Angew Chem Int Ed, 55(2016)2-22.

  9.   Brulé T, Buton N, David C, Horiba Application Note, Pharmaceuticals RA PSA 01.

10.   Lee E, Horiba Application Note, Pharmaceutical RA 58,


Asian Journal of Physics                                                                                                   Vol. 27 Nos 7 & 8, (2018), 403-411

Correlation between the Raman residual stress patterns to physical
defect density in a multicrystalline Silicon wafer

Jason Wonga and Tim Battenb

aREC Wafer Pte Ltd, 20 Tuas South Avenue 14, Singapore 637312
bRenishaw Plc, Old Town, Wotton-under-Edge, Gloucestershire GL12 7DW, United Kingdom


Raman spectroscopy has been used to characterize the mechanical properties and microstructure of as-cut solar grade multicrystalline silicon wafers. Three graded wafers with different electronic performance we studied. It was found that lower grade (lower performance) wafers originating from the top of the silicon ingot exhibited smaller compressive residual stress potentially as a result of higher concentrations of dislocation. Study of the microstructure of these wafers found that the dislocations are primarily sited in [311] orientated crystal grains. The presence of these defects will influence the mechanical strength of the wafers resulting in lower grade wafers being more susceptible to failure during solar cell processing and as a result it is preferable to reduce [311] grain concentrations during wafer growth. © Anita Publications. All rights reserved.

  1.   M. Becker, H. Scheel, S. Christiansen, H.P. Strunk, Journal of Applied Physics 101 063531 (2007)

  2.   George Sarau, Silke Christiansen, Photovoltaic Specialists Conference (PVSC) 35 001770-001775 (2010)

  3.   Zi.Q, Lu, T.Quinn, H.S Reehal, Journal of Applied Physics 97, 033512 (2005)

  4.   Stokkan G, Acta Materialia, 58 (2010) 3223-3229

  5.   Isao Takahashi, Noritaka Usami, Kentaro Kutsukake, Gaute Stokkan, Kohei Morishita, Kazuo Nakajima,  Journal of Crystal Growth 312 897-901 (2010)

  6.   Saurabh Puri, Anish Roy, In Press Corrected Proof, Computational Material Science (2011)

  7.   Nan Chen, Shenyu Qiu, Bingfa Liu, Guoping Dua, Guihua Liu, Wei Sun, Materials Science in Semiconductor Processing 13 276–280 (2010)

  8.   Kazuo Nakajima, Kentaro Kutsukake, Kozo Fujiwara, Kohei Morishita, SatoshiOno, Journal of Crystal Growth 319  3–18 (2010)

  9.   Xiaoming Wu,  Jianyuan Yu, Tianling Ren, Litian Liu, Microelectronics Journal 38 87–90 (2007)

10.   S. Kouteva-Arguirova, W. Seifert, M. Kittler, J. Reif, Materials Science and Engineering B 102 1-3 37-42 (2003)

11.   Wyatt K. Metzger, Solar Energy Materials & Solar Cells 92 1123– 1135 (2008)

12.   V. Osinniy, P. Bomholt, A. Nylandsted Larsen, E. Enebakk, A.-K. Søiland, R. Tronstad, Y. Safir, Solar Energy Materials and Solar Cells 95 2 564-572 (2011)

13.   T. Kunz, M.T. Hessmann, B. Meidel, C.J. Brabec, Journal of Crystal Growth 314 1 53-57 (2011)

14.   Zhang, H., Zheng, L., Ma, X., Zhao, B., Wang, C., Xu, F, Journal of Crystal Growth 318, 1, 283-287 (2011)

15.   Li, T.F., Yeh, K.M., Hsu, W.C., Lan, C.W., Journal of Crystal Growth 318, 1, 219-223 (2011)

16.   Dughiero, F., Forzan, M., Ciscato, D., Dughiero, F., Forzan, M., Ciscato, D., 35th IEEE Photovoltaic Specialists Conference, art. no. 5615883, 2165-2170





Asian Journal of Physics                                                                                                      Vol. 27 Nos 7 & 8, (2018), 413-421


High resolution confocal Raman imaging: Principle, instrumentation,
data analysis and applications

Hailong Hu1*, David Steinmetz2 and Olaf Hollricher2

1WITec GmbH Beijing Representative Office#507, Landmark Tower 1, 8 North Dongsanhuan Road, Chaoyang District, Beijing, PRC. 100004

2WITec GmbHLise-Meitner-Str. 6, 89081 Ulm, Germany


Confocal Raman imaging is able to provide high-resolution distribution of chemical components and structures in 2D or 3D spaces, having been widely applied in many fundamental research and industrial fields. The performance of confocal Raman microscopy is highly dependent upon the geometry and diameter of confocal pinhole. The use of confocal pinhole ensures to not only reduce Raman collection volume but also improve the spatial resolution. This paper compares different Raman imaging modes and the influence of different pinhole geometry and size on spatial resolution. High resolution Raman images of graphene materials, geoscience and biomedical diagnostics are discussed, establishing the advantages and promising future of confocal Raman microscopy. © Anita Publications. All rights reserved.

Total Refs : 26


Asian Journal of Physics                                                                                                        Vol. 27 Nos 7 & 8, (2018), 423-433

Rapid culture free Pathogen detection using SERS technique

Ujjal Kumar Sur* and Amar Ghosh

Department of Chemistry, Behala College, University of Calcutta, Kolkata-60, India


Surface-enhanced Raman scattering (SERS) spectroscopy has emerged as a versatile surface sensitive spectroscopic analytical tool on account of the gigantic augmentation of weak Raman signal and can assist appropriate detection of chemical and biological systems. SERS technique is so versatile that it can be employed from diverse applications ranging from plasmonics, sensing, catalysis to biomedical applications and diagnostics. This novel powerful technique has been utilized to detect pathogens including bacteria and viruses. In this paper, we have discussed the use of various SERS active substrates for the rapid identification of pathogens like viruses and bacteria. The pathogen detection by SERS technique represents a novel approach for rapid microbial diagnostics, where SERS can be directly applied on clinical sample rather than pure cultured one. We review comprehensively in a comparative manner the various studies involving the utilization of SERS technique to detect pathogens and provide a novel approach in terms of diagnostics applications. A few examples have been provided from the recent studies on the detection of pathogens by SERS technique from our research group © Anita Publications. All rights reserved.

Keywords: Bacteria, Spectroscopy, Raman scattering, Surface-enhanced Raman scattering, Silver nanoparticles, Biosynthesis, Pathogen detection.

Total Refs : 43


Conference Report - ISTAM-2018 (29th September 2018)

(By Er Manoj Kumar, Assistant Secretary, Indian Spectroscopy Society)

International Seminar on Technologically Advanced Materials (ISTAM-2018)

Muslim Arts College, Thiruvithancode
(Sponsored by Indian Spectroscopy Society, Ghaziabad)

Conference Report-ISTAM-2018.pdf
Conference Report_ISTAM-2018


All rights reserved

Designed & Maintained by

Manoj Kumar